import gradio as gr from sql_generator import SQLGenerator from intent_classifier import IntentClassifier from rag_system import RAGSystem from huggingface_hub import InferenceClient # Initialize Hugging Face InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Unified System Class class UnifiedSystem: def __init__(self): self.sql_generator = SQLGenerator() self.intent_classifier = IntentClassifier() self.rag_system = RAGSystem() self.base_url = "https://agkd0n-fa.myshopify.com/products/" def process_query(self, query): intent, confidence = self.intent_classifier.classify(query) if intent == "database_query": sql_query = self.sql_generator.generate_query(query) products = self.sql_generator.fetch_shopify_data("products") if products and 'products' in products: results = "\n".join([ f"Title: {p['title']}\nVendor: {p['vendor']}\nDescription: {p.get('body_html', 'No description available.')}\nURL: {self.base_url}{p['handle']}\n" for p in products['products'] ]) return f"Intent: Database Query (Confidence: {confidence:.2f})\n\n" \ f"SQL Query: {sql_query}\n\nResults:\n{results}" else: return "No results found or error fetching data from Shopify." elif intent == "product_description": rag_response = self.rag_system.process_query(query) product_handles = rag_response.get('product_handles', []) urls = [f"{self.base_url}{handle}" for handle in product_handles] response = rag_response.get('response', "No description available.") return f"Intent: Product Description (Confidence: {confidence:.2f})\n\n" \ f"Response: {response}\n\nProduct Details:\n" + "\n".join( [f"Product URL: {url}" for url in urls] ) return "Intent not recognized." # Chatbot Response using Hugging Face's model def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Create Gradio interface with integrated functionalities def create_interface(): system = UnifiedSystem() # Define the interface iface = gr.Interface( fn=system.process_query, inputs=gr.Textbox( label="Enter your query", placeholder="e.g., 'Show me all T-shirts' or 'Describe the product features'" ), outputs=gr.Textbox(label="Response"), title="Unified Query Processing System", description="Enter a natural language query to search products or get descriptions.", examples=[ ["Show me shirts less than 50 rupee"], ["Show me shirts with red color"], ["Show me T-shirts with M size"] ] ) # Define Chat Interface for Hugging Face Model chat_demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch both interfaces (Unified System and Chatbot) iface.launch(share=True) # Share the interface for public access chat_demo.launch(share=True) # Launch the chatbot interface for user interaction if __name__ == "__main__": create_interface()