Spaces:
Runtime error
Runtime error
import json | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling | |
from torch.utils.data import Dataset | |
import os | |
# Step 1: Load and Preprocess Data | |
class SpiderDataset(Dataset): | |
def __init__(self, file_paths, tokenizer, max_length=128): | |
self.data = [] | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
for file_path in file_paths: | |
with open(file_path, 'r') as f: | |
self.data.extend(json.load(f)) | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
item = self.data[idx] | |
question = item['question'] | |
sql_query = item['query'] | |
# Tokenize inputs and labels | |
input_encoding = self.tokenizer( | |
question, | |
max_length=self.max_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt" | |
) | |
output_encoding = self.tokenizer( | |
sql_query, | |
max_length=self.max_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt" | |
) | |
# Prepare inputs and labels | |
input_ids = input_encoding['input_ids'].squeeze() | |
labels = output_encoding['input_ids'].squeeze() | |
return { | |
"input_ids": input_ids, | |
"labels": labels | |
} | |
# Step 2: Initialize Tokenizer and Model | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token # Set pad token | |
# Load model with language model head | |
model = GPT2LMHeadModel.from_pretrained("distilgpt2") | |
# Step 3: Load Datasets | |
# Assuming the files are in a directory called `space/dataset` | |
file_paths = [ | |
"text2sql_pepe/train_others.json", | |
"text2sql_pepe/dev.json", | |
"text2sql_pepe/train_spider.json", | |
"text2sql_pepe/test.json" | |
] | |
train_dataset = SpiderDataset(file_paths, tokenizer) | |
# Step 4: Define Training Arguments | |
training_args = TrainingArguments( | |
output_dir="./distilgpt2-sql-converter", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=4, | |
per_device_eval_batch_size=4, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
save_total_limit=2, | |
) | |
# Step 5: Initialize Trainer with Data Collator | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
data_collator=data_collator, | |
) | |
# Step 6: Train the Model | |
trainer.train() | |
# Step 7: Save the Model and Tokenizer | |
model.save_pretrained("./distilgpt2-sql-converter") | |
tokenizer.save_pretrained("./distilgpt2-sql-converter") | |