Spaces:
Runtime error
Runtime error
nileshhanotia
commited on
Commit
•
c896cf3
1
Parent(s):
245af2f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Step 1: Load and Preprocess Data
|
7 |
+
class SpiderDataset(Dataset):
|
8 |
+
def __init__(self, file_paths, tokenizer, max_length=128):
|
9 |
+
self.data = []
|
10 |
+
self.tokenizer = tokenizer
|
11 |
+
self.max_length = max_length
|
12 |
+
|
13 |
+
for file_path in file_paths:
|
14 |
+
with open(file_path, 'r') as f:
|
15 |
+
self.data.extend(json.load(f))
|
16 |
+
|
17 |
+
def __len__(self):
|
18 |
+
return len(self.data)
|
19 |
+
|
20 |
+
def __getitem__(self, idx):
|
21 |
+
item = self.data[idx]
|
22 |
+
question = item['question']
|
23 |
+
sql_query = item['query']
|
24 |
+
|
25 |
+
# Tokenize inputs and labels
|
26 |
+
input_encoding = self.tokenizer(
|
27 |
+
question,
|
28 |
+
max_length=self.max_length,
|
29 |
+
padding="max_length",
|
30 |
+
truncation=True,
|
31 |
+
return_tensors="pt"
|
32 |
+
)
|
33 |
+
|
34 |
+
output_encoding = self.tokenizer(
|
35 |
+
sql_query,
|
36 |
+
max_length=self.max_length,
|
37 |
+
padding="max_length",
|
38 |
+
truncation=True,
|
39 |
+
return_tensors="pt"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Prepare inputs and labels
|
43 |
+
input_ids = input_encoding['input_ids'].squeeze()
|
44 |
+
labels = output_encoding['input_ids'].squeeze()
|
45 |
+
|
46 |
+
return {
|
47 |
+
"input_ids": input_ids,
|
48 |
+
"labels": labels
|
49 |
+
}
|
50 |
+
|
51 |
+
# Step 2: Initialize Tokenizer and Model
|
52 |
+
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
53 |
+
tokenizer.pad_token = tokenizer.eos_token # Set pad token
|
54 |
+
|
55 |
+
# Load model with language model head
|
56 |
+
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
57 |
+
|
58 |
+
# Step 3: Load Datasets
|
59 |
+
# Assuming the files are in a directory called `space/dataset`
|
60 |
+
file_paths = [
|
61 |
+
"space/dataset/train_others.json",
|
62 |
+
"space/dataset/dev.json",
|
63 |
+
"space/dataset/train_spider.json",
|
64 |
+
"space/dataset/test.json"
|
65 |
+
]
|
66 |
+
train_dataset = SpiderDataset(file_paths, tokenizer)
|
67 |
+
|
68 |
+
# Step 4: Define Training Arguments
|
69 |
+
training_args = TrainingArguments(
|
70 |
+
output_dir="./distilgpt2-sql-converter",
|
71 |
+
evaluation_strategy="epoch",
|
72 |
+
learning_rate=2e-5,
|
73 |
+
per_device_train_batch_size=4,
|
74 |
+
per_device_eval_batch_size=4,
|
75 |
+
num_train_epochs=3,
|
76 |
+
weight_decay=0.01,
|
77 |
+
logging_dir="./logs",
|
78 |
+
save_total_limit=2,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Step 5: Initialize Trainer with Data Collator
|
82 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
83 |
+
|
84 |
+
trainer = Trainer(
|
85 |
+
model=model,
|
86 |
+
args=training_args,
|
87 |
+
train_dataset=train_dataset,
|
88 |
+
data_collator=data_collator,
|
89 |
+
)
|
90 |
+
|
91 |
+
# Step 6: Train the Model
|
92 |
+
trainer.train()
|
93 |
+
|
94 |
+
# Step 7: Save the Model and Tokenizer
|
95 |
+
model.save_pretrained("./distilgpt2-sql-converter")
|
96 |
+
tokenizer.save_pretrained("./distilgpt2-sql-converter")
|