Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
model_name = "nmarinnn/bert-bregman"
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def predict(text):
|
10 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
11 |
+
with torch.no_grad():
|
12 |
+
outputs = model(**inputs)
|
13 |
+
|
14 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
15 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
16 |
+
|
17 |
+
class_labels = {0: "negativo", 1: "neutro", 2: "positivo"}
|
18 |
+
predicted_label = class_labels[predicted_class]
|
19 |
+
predicted_probability = probabilities[0][predicted_class].item()
|
20 |
+
|
21 |
+
result = f"Clase predicha: {predicted_label} (probabilidad = {predicted_probability:.2f})\n"
|
22 |
+
result += f"Probabilidades: Negativo: {probabilities[0][0]:.2f}, Neutro: {probabilities[0][1]:.2f}, Positivo: {probabilities[0][2]:.2f}"
|
23 |
+
|
24 |
+
return result
|
25 |
+
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=gr.Textbox(lines=2, placeholder="Ingrese el texto aquí..."),
|
29 |
+
outputs="text",
|
30 |
+
title="Clasificador de Sentimientos",
|
31 |
+
description="Este modelo clasifica el sentimiento del texto como negativo, neutro o positivo."
|
32 |
+
)
|
33 |
+
|
34 |
+
iface.launch()
|