noamelata
initial commit
82ad0f2
raw
history blame
2.44 kB
from functools import partial
from random import randint
import gradio as gr
import torch
from tqdm import tqdm
from NestedPipeline import NestedStableDiffusionPipeline
from NestedScheduler import NestedScheduler
def run(prompt, outer, inner, random_seed, pipe):
seed = 24 if not random_seed else randint(0, 10000)
generator = torch.Generator(device).manual_seed(seed)
outer_diffusion = tqdm(range(outer), desc="Outer Diffusion")
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
cur = [0, 0]
for i, j, im in pipe(prompt, num_inference_steps=outer, num_inner_steps=inner, generator=generator):
if cur[-1] != j:
inner_diffusion.update()
cur[-1] = j
if cur[0] != i and i != outer:
cur[0] = i
outer_diffusion.update()
cur[-1] = 0
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
elif cur[0] != i:
outer_diffusion.update()
monospace_s, monospace_e = "<p style=\"font-family:'Lucida Console', monospace\">", "</p>"
yield f"{monospace_s}{outer_diffusion.__str__().replace(' ', '&nbsp;')}{monospace_e} \n {monospace_s}{inner_diffusion.__str__().replace(' ', '&nbsp;')}{monospace_e}", im[0]
if __name__ == "__main__":
scheduler = NestedScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
prediction_type='sample', clip_sample=False, set_alpha_to_one=False)
pipe = NestedStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16",
torch_dtype=torch.float16, scheduler=scheduler)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
interface = partial(run, pipe=pipe)
demo = gr.Interface(
fn=interface,
inputs=[gr.Textbox(value="a photograph of a nest with a blue egg inside"),
gr.Slider(minimum=1, maximum=10, value=4, step=1),
gr.Slider(minimum=5, maximum=50, value=10, step=1),
"checkbox"],
outputs=[gr.HTML(), gr.Image(shape=[512, 512], elem_id="output_image").style(width=512, height=512)],
# css=".output_image {height: 10% !important; width: 10% !important;}",
allow_flagging="never"
)
demo.queue()
demo.launch(share=True, server_name="132.68.39.164", server_port=7861)