Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from diffusers import DDIMScheduler | |
from diffusers.utils import BaseOutput | |
class NestedSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: Optional[torch.FloatTensor] = None | |
class NestedScheduler(DDIMScheduler): | |
def set_timesteps(self, num_inference_steps: int, max_timestep: int = 1000, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating figures with a pre-trained model. | |
max_timestep (`int`): | |
the highest timestep to use for choosing the timesteps | |
""" | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
self.num_inference_steps = num_inference_steps | |
max_timestep = min(self.config.num_train_timesteps - 1, max_timestep) | |
timesteps = np.linspace(1, max_timestep, min(num_inference_steps, max_timestep)).round()[::-1].copy().astype(np.int64) | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
eta: float = 0.0, | |
use_clipped_model_output: bool = False, | |
generator=None, | |
variance_noise: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
override_prediction_type = '', | |
) -> Union[NestedSchedulerOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
eta (`float`): weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped | |
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when | |
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would | |
coincide with the one provided as input and `use_clipped_model_output` will have not effect. | |
generator: random number generator. | |
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we | |
can directly provide the noise for the variance itself. This is useful for methods such as | |
CycleDiffusion. (https://arxiv.org/abs/2210.05559) | |
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: | |
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf | |
# Ideally, read DDIM paper in-detail understanding | |
# Notation (<variable name> -> <name in paper> | |
# - pred_noise_t -> e_theta(x_t, t) | |
# - pred_original_sample -> f_theta(x_t, t) or x_0 | |
# - std_dev_t -> sigma_t | |
# - eta -> η | |
# - pred_sample_direction -> "direction pointing to x_t" | |
# - pred_prev_sample -> "x_t-1" | |
# 1. get previous step value (=t-1) | |
# prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | |
cur_idx = (self.timesteps == timestep).nonzero().item() | |
prev_timestep = self.timesteps[cur_idx + 1] if cur_idx < len(self.timesteps) - 1 else 0 | |
# 2. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
# 3. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
prediction_type = override_prediction_type if override_prediction_type else self.config.prediction_type | |
if prediction_type == "epsilon": | |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
pred_epsilon = model_output | |
elif prediction_type == "sample": | |
pred_original_sample = model_output | |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
elif prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction`" | |
) | |
# 4. Clip or threshold "predicted x_0" | |
if self.config.thresholding: | |
pred_original_sample = self._threshold_sample(pred_original_sample) | |
elif self.config.clip_sample: | |
pred_original_sample = pred_original_sample.clamp( | |
-self.config.clip_sample_range, self.config.clip_sample_range | |
) | |
# 5. compute variance: "sigma_t(η)" -> see formula (16) | |
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
variance = self._get_variance(timestep, prev_timestep) | |
std_dev_t = eta * variance ** (0.5) | |
if use_clipped_model_output: | |
# the pred_epsilon is always re-derived from the clipped x_0 in Glide | |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon | |
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
if eta > 0: | |
if variance_noise is not None and generator is not None: | |
raise ValueError( | |
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" | |
" `variance_noise` stays `None`." | |
) | |
if variance_noise is None: | |
variance_noise = torch.randn( | |
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype | |
) | |
variance = std_dev_t * variance_noise | |
prev_sample = prev_sample + variance | |
if not return_dict: | |
return (prev_sample,) | |
return NestedSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |