noamelata
added description
a05e9a7
from functools import partial
from random import randint
import gradio as gr
import torch
from tqdm import tqdm
from NestedPipeline import NestedStableDiffusionPipeline
from NestedScheduler import NestedScheduler
def run(prompt, outer, inner, random_seed, pipe):
seed = 24 if not random_seed else randint(0, 10000)
generator = torch.Generator(device).manual_seed(seed)
outer_diffusion = tqdm(range(outer), desc="Outer Diffusion")
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
cur = [0, 0]
for i, j, im in pipe(prompt, num_inference_steps=outer, num_inner_steps=inner, generator=generator):
if cur[-1] != j:
inner_diffusion.update()
cur[-1] = j
if cur[0] != i and i != outer:
cur[0] = i
outer_diffusion.update()
cur[-1] = 0
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
elif cur[0] != i:
outer_diffusion.update()
monospace_s, monospace_e = "<p style=\"font-family:'Lucida Console', monospace\">", "</p>"
yield f"{monospace_s}{outer_diffusion.__str__().replace(' ', '&nbsp;')}{monospace_e} \n {monospace_s}{inner_diffusion.__str__().replace(' ', '&nbsp;')}{monospace_e}", im[0]
if __name__ == "__main__":
scheduler = NestedScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
prediction_type='sample', clip_sample=False, set_alpha_to_one=False)
fp16 = False
if fp16:
pipe = NestedStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16",
torch_dtype=torch.float16, scheduler=scheduler)
else:
pipe = NestedStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", scheduler=scheduler)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
interface = partial(run, pipe=pipe)
demo = gr.Interface(
fn=interface,
title="Nested Diffusion",
description="<h3 style=\"text-align: center;\">Anytime text-to-image generation with Stable Diffusion v1.5</h3>\n<p style=\"text-align: center;\"><b>Help: </b>Type the desired prompt in the prompt box, and adjust the number of outer and inner steps to use. Using more steps takes more time, but should create a better image.<br>For more information on Nested Diffuion: <a href=\"https://github.com/noamelata/NestedDiffusion\">Github</a>, <a href=\"https://arxiv.org/abs/2305.19066\">arXiv</a></p>",
inputs=[gr.Textbox(value="a photograph of a nest with a blue egg inside", label="Prompt"),
gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Outer Steps"),
gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Inner Steps"),
gr.Checkbox(label="Random Seed")],
outputs=[gr.HTML(), gr.Image(shape=[512, 512], elem_id="output_image").style(width=512, height=512)],
allow_flagging="never",
thumbnail="figures/Nested_Egg.png"
)
demo.queue()
demo.launch()