Manoj Kumar
commited on
Commit
·
39179ce
1
Parent(s):
f753320
updated question structure
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.11.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
python: 3.9
|
11 |
---
|
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.11.0
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
python: 3.9
|
11 |
---
|
app.py
CHANGED
@@ -9,41 +9,9 @@ db_schema = {
|
|
9 |
"customers": ["customer_id", "name", "email", "phone_number"]
|
10 |
}
|
11 |
|
12 |
-
# Load the model and tokenizer
|
13 |
-
model_name = "EleutherAI/gpt-neox-20b" # You can also use "Llama-2-7b" or another model
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
16 |
|
17 |
-
def
|
18 |
-
|
19 |
-
Generate an SQL query based on the question and context.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
context (str): Description of the database schema or table relationships.
|
23 |
-
question (str): User's natural language query.
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
str: Generated SQL query.
|
27 |
-
"""
|
28 |
-
# Prepare the prompt
|
29 |
-
prompt = f"""
|
30 |
-
Context: {context}
|
31 |
-
|
32 |
-
Question: {question}
|
33 |
-
|
34 |
-
Write an SQL query to address the question based on the context.
|
35 |
-
Query:
|
36 |
-
"""
|
37 |
-
# Tokenize input
|
38 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
-
|
40 |
-
# Generate SQL query
|
41 |
-
output = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
|
42 |
-
query = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
-
|
44 |
-
# Extract query from the output
|
45 |
-
sql_query = query.split("Query:")[-1].strip()
|
46 |
-
return sql_query
|
47 |
|
48 |
# Schema as a context for the model
|
49 |
schema_description = json.dumps(db_schema, indent=4)
|
@@ -57,5 +25,5 @@ while True:
|
|
57 |
break
|
58 |
|
59 |
# Generate SQL query
|
60 |
-
sql_query =
|
61 |
print(f"Generated SQL Query:\n{sql_query}\n")
|
|
|
9 |
"customers": ["customer_id", "name", "email", "phone_number"]
|
10 |
}
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def dummy_function(schema_description, user_question):
|
14 |
+
print(user_question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Schema as a context for the model
|
17 |
schema_description = json.dumps(db_schema, indent=4)
|
|
|
25 |
break
|
26 |
|
27 |
# Generate SQL query
|
28 |
+
sql_query = dummy_function(schema_description, user_question)
|
29 |
print(f"Generated SQL Query:\n{sql_query}\n")
|