Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import numpy as np | |
from collections import OrderedDict | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def get_parameter_dtype(parameter: torch.nn.Module): | |
try: | |
params = tuple(parameter.parameters()) | |
if len(params) > 0: | |
return params[0].dtype | |
buffers = tuple(parameter.buffers()) | |
if len(buffers) > 0: | |
return buffers[0].dtype | |
except StopIteration: | |
# For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: | |
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
return tuples | |
gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
first_tuple = next(gen) | |
return first_tuple[1].dtype | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResnetBlock(nn.Module): | |
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | |
super().__init__() | |
ps = ksize // 2 | |
if in_c != out_c or sk == False: | |
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
else: | |
self.in_conv = None | |
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | |
self.act = nn.ReLU() | |
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
if sk == False: | |
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
else: | |
self.skep = None | |
self.down = down | |
if self.down == True: | |
self.down_opt = Downsample(in_c, use_conv=use_conv) | |
def forward(self, x): | |
if self.down == True: | |
x = self.down_opt(x) | |
if self.in_conv is not None: # edit | |
x = self.in_conv(x) | |
h = self.block1(x) | |
h = self.act(h) | |
h = self.block2(h) | |
if self.skep is not None: | |
return h + self.skep(x) | |
else: | |
return h + x | |
class Low_CNN(nn.Module): | |
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): | |
super(Low_CNN, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(8) | |
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | |
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) | |
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) | |
self.adapter = nn.Linear(1280, 1280) | |
def dtype(self) -> torch.dtype: | |
""" | |
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
""" | |
return get_parameter_dtype(self) | |
def forward(self, x): | |
x = self.unshuffle(x) | |
x = self.conv_in(x) | |
x = self.body(x) | |
x = self.pool(x) | |
x = x.flatten(start_dim=1, end_dim=-1) | |
x = self.adapter(x) | |
return x | |
class Middle_CNN(nn.Module): | |
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): | |
super(Middle_CNN, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(8) | |
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | |
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) | |
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) | |
self.adapter = nn.Linear(1280, 1280) | |
def dtype(self) -> torch.dtype: | |
""" | |
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
""" | |
return get_parameter_dtype(self) | |
def forward(self, x): | |
x = self.unshuffle(x) | |
x = self.conv_in(x) | |
x = self.body(x) | |
x = self.pool(x) | |
x = x.flatten(start_dim=1, end_dim=-1) | |
x = self.adapter(x) | |
return x | |
class High_CNN(nn.Module): | |
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True): | |
super(High_CNN, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(8) | |
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv), | |
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | |
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1) | |
self.pool = nn.AvgPool2d(kernel_size=2, stride=2) | |
self.adapter = nn.Linear(1280, 1280) | |
def dtype(self) -> torch.dtype: | |
""" | |
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
""" | |
return get_parameter_dtype(self) | |
def forward(self, x): | |
x = self.unshuffle(x) | |
x = self.conv_in(x) | |
x = self.body(x) | |
x = self.pool(x) | |
x = x.flatten(start_dim=1, end_dim=-1) | |
x = self.adapter(x) | |
return x | |
class Style_Aware_Encoder(torch.nn.Module): | |
def __init__(self, image_encoder): | |
super().__init__() | |
self.image_encoder = image_encoder | |
self.projection_dim = self.image_encoder.config.projection_dim | |
self.num_positions = 59 | |
self.embed_dim = 1280 | |
self.cnn = nn.ModuleList( | |
[High_CNN(sk=True, use_conv=False), | |
Middle_CNN(sk=True, use_conv=False), | |
Low_CNN(sk=True, use_conv=False)] | |
) | |
self.style_embeddings = nn.ParameterList( | |
[nn.Parameter(torch.randn(self.embed_dim)), | |
nn.Parameter(torch.randn(self.embed_dim)), | |
nn.Parameter(torch.randn(self.embed_dim))] | |
) | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
def forward(self, inputs, batch_size=1): | |
embeddings = [] | |
for idx, x in enumerate(inputs): | |
class_embed = self.style_embeddings[idx].expand(batch_size, 1, -1) | |
patch_embed = self.cnn[idx](x) | |
patch_embed = patch_embed.view(batch_size, -1, patch_embed.shape[1]) | |
embedding = torch.cat([class_embed, patch_embed], dim=1) | |
embeddings.append(embedding) | |
embeddings = torch.cat(embeddings, dim=1) | |
embeddings = embeddings + self.position_embedding(self.position_ids) # [B, 256, 1280] - [B, P, 1280] | |
embeddings = self.image_encoder.vision_model.pre_layrnorm(embeddings) | |
encoder_outputs = self.image_encoder.vision_model.encoder( | |
inputs_embeds=embeddings, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
) | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = last_hidden_state[:, [0, 9, 26], :] | |
pooled_output = self.image_encoder.vision_model.post_layernorm(pooled_output) | |
out = self.image_encoder.visual_projection(pooled_output) | |
return out | |