Spaces:
Paused
Paused
nroggendorff
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
import torch
|
|
|
4 |
|
5 |
-
|
6 |
|
7 |
bnb_config = BitsAndBytesConfig(
|
8 |
load_in_4bit=True,
|
@@ -11,11 +12,12 @@ bnb_config = BitsAndBytesConfig(
|
|
11 |
bnb_4bit_compute_dtype=torch.bfloat16
|
12 |
)
|
13 |
|
14 |
-
model_id = "cognitivecomputations/dolphin-2.
|
15 |
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
18 |
|
|
|
19 |
def predict(input_text, history):
|
20 |
chat = []
|
21 |
for item in history:
|
@@ -26,7 +28,7 @@ def predict(input_text, history):
|
|
26 |
|
27 |
conv = tokenizer.apply_chat_template(chat, tokenize=False)
|
28 |
inputs = tokenizer(conv, return_tensors="pt").to("cuda")
|
29 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
30 |
|
31 |
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
32 |
return generated_text.split("<|assistant|>")[-1]
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
import torch
|
4 |
+
from spaces import GPU
|
5 |
|
6 |
+
GPU = lambda: GPU(duration=70)
|
7 |
|
8 |
bnb_config = BitsAndBytesConfig(
|
9 |
load_in_4bit=True,
|
|
|
12 |
bnb_4bit_compute_dtype=torch.bfloat16
|
13 |
)
|
14 |
|
15 |
+
model_id = "cognitivecomputations/dolphin-2.5-mixtral-8x7b"
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
19 |
|
20 |
+
@GPU
|
21 |
def predict(input_text, history):
|
22 |
chat = []
|
23 |
for item in history:
|
|
|
28 |
|
29 |
conv = tokenizer.apply_chat_template(chat, tokenize=False)
|
30 |
inputs = tokenizer(conv, return_tensors="pt").to("cuda")
|
31 |
+
outputs = model.generate(**inputs, max_new_tokens=2048)
|
32 |
|
33 |
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
34 |
return generated_text.split("<|assistant|>")[-1]
|