File size: 6,328 Bytes
0c9bb32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
"""
A simple implementation of conditional flow matching for generating anime faces.
"""
import argparse
import pickle
import random
import time
from pathlib import Path
import jax
import jax.numpy as jnp
import kagglehub
import matplotlib.pyplot as plt
import numpy as np
import optax
import ot
import yaml
from flax import nnx
from jax.experimental import ode
from PIL import Image
from tqdm.cli import tqdm
from model import DiT, DiTConfig
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, default="config.yaml", help="Path to config file"
)
return parser.parse_args()
def load_config(config_path):
with open(config_path) as f:
config = yaml.safe_load(f)
return config
def gen_data_batches(data, batch_size):
N = data.shape[0]
while True:
random_indices = np.random.choice(N, size=batch_size, replace=False)
batch = data[random_indices]
batch = batch.astype(np.float32) / 256
yield batch
def loss_fn(flow, batch):
xt, t, vt = batch
velocity = flow(xt, t)
loss = jnp.mean(jnp.square(velocity - vt))
return loss
def train_step(flow, optimizer, rngs, batch):
x0, x1 = batch
noise = jax.random.uniform(rngs(), shape=x1.shape, minval=0, maxval=1 / 256)
x1 = x1 + noise
# randomize t
t = jax.random.uniform(rngs(), (x1.shape[0],), minval=0, maxval=1)
# randomize x0
xt = x0 + (x1 - x0) * t[:, None, None, None]
vt = x1 - x0
batch = (xt, t, vt)
loss, grads = nnx.value_and_grad(loss_fn)(flow, batch)
optimizer.update(grads)
return loss
@jax.jit
def train_step_raw(graphdef, state, batch):
flow, optimizer, rngs = nnx.merge(graphdef, state)
loss = train_step(flow, optimizer, rngs, batch)
_, state = nnx.split((flow, optimizer, rngs))
return state, loss
@jax.jit
def sample_images(graphdef, state):
flow, _, _ = nnx.merge(graphdef, state)
def flow_fn(y, t):
o = flow(y, t[None])
return o
x = jax.random.normal(nnx.Rngs(0)(), shape=(16, 64, 64, 3), dtype=jnp.float32)
o = ode.odeint(flow_fn, x, jnp.linspace(0, 1, 1000))
o = jnp.clip(o[-1], 0, 1)
return o
def generate_ot_pairs(x1):
n = x1.shape[0]
x0 = np.random.randn(*x1.shape)
d1 = x1.reshape(n, -1)
d0 = x0.reshape(n, -1)
# loss matrix
M = ot.dist(d0, d1)
a, b = np.ones((n,)), np.ones((n,))
G0 = ot.emd(a, b, M)
d1 = np.matmul(G0, d1)
x1 = d1.reshape(*x1.shape)
return x0, x1
def plot_new_images(step: int, graphdef, state):
images = sample_images(graphdef, state)
plt.figure(figsize=(2, 2))
for i in range(16):
plt.subplot(4, 4, i + 1)
plt.imshow(images[i])
plt.axis("off")
plt.subplots_adjust(left=0, bottom=0, top=1, right=1, wspace=0, hspace=0)
plt.savefig(f"images_{step:06d}.png")
plt.close()
args = parse_args()
config = load_config(args.config)
# Download latest version
path = kagglehub.dataset_download("thimac/anime-face-64")
data_path = Path(path) / "64x64"
print("Path to dataset files:", data_path)
data_dir = data_path
image_files = sorted(data_dir.glob("*.jpg"))
random.Random(config["data"]["random_seed"]).shuffle(image_files)
N = len(image_files)
dataset = np.empty((N, 64, 64, 3), dtype=np.uint8)
for i, file_path in enumerate(tqdm(image_files)):
dataset[i] = Image.open(file_path)
L = int(N * config["data"]["train_split"])
train_data = dataset[:L]
test_data = dataset[L:]
plt.figure(figsize=(2, 2))
for i in range(16):
plt.subplot(4, 4, i + 1)
plt.imshow(train_data[i])
plt.axis("off")
plt.subplots_adjust(left=0, bottom=0, top=1, right=1, wspace=0, hspace=0)
plt.savefig("train_data_samples.png")
plt.close()
scheduler = optax.cosine_onecycle_schedule(
transition_steps=config["training"]["num_steps"],
peak_value=config["training"]["learning_rate"],
pct_start=config["training"]["warmup_pct"],
)
gradient_transform = optax.chain(
optax.clip_by_global_norm(config["training"]["grad_clip_norm"]),
optax.scale_by_adam(),
optax.scale_by_schedule(scheduler),
optax.add_decayed_weights(config["training"]["weight_decay"]),
optax.scale(-1.0),
)
dit_config = DiTConfig(
input_dim=config["model"]["input_dim"],
hidden_dim=config["model"]["hidden_dim"],
num_blocks=config["model"]["num_blocks"],
num_heads=config["model"]["num_heads"],
patch_size=config["model"]["patch_size"],
patch_stride=config["model"]["patch_stride"],
time_freq_dim=config["model"]["time_freq_dim"],
time_max_period=config["model"]["time_max_period"],
mlp_ratio=config["model"]["mlp_ratio"],
use_bias=config["model"]["use_bias"],
padding=config["model"]["padding"],
pos_embed_cls_token=config["model"]["pos_embed_cls_token"],
pos_embed_extra_tokens=config["model"]["pos_embed_extra_tokens"],
)
flow = DiT(dit_config, rngs=nnx.Rngs(0))
optimizer = nnx.Optimizer(flow, gradient_transform)
rngs = nnx.Rngs(0)
graphdef, state = nnx.split((flow, optimizer, rngs))
train_data_iter = gen_data_batches(train_data, config["training"]["batch_size"])
start = time.perf_counter()
losses = []
ckpt_path = config["checkpointing"].get("resume_from_checkpoint")
if ckpt_path:
del state
with open(ckpt_path, "rb") as f:
state = pickle.load(f)
print(f"Resuming from checkpoint {ckpt_path}")
step_str = Path(ckpt_path).stem.split("_")[-1]
start_step = int(step_str) + 1
else:
start_step = 1
for step, batch in enumerate(train_data_iter, start=start_step):
x0, x1 = generate_ot_pairs(batch)
state, loss = train_step_raw(graphdef, state, (x0, x1))
if step % 100 == 0:
losses.append(loss.item())
if step % config["checkpointing"]["log_every"] == 0:
end = time.perf_counter()
duration = end - start
loss = sum(losses) / len(losses)
start = time.perf_counter()
losses = []
print(f"step {step:06d} loss {loss:.3f} duration {duration:.3f}s", flush=True)
if step % config["checkpointing"]["plot_every"] == 0:
plot_new_images(step, graphdef, state)
if step % config["checkpointing"]["save_every"] == 0:
# save checkpoint
with open(f"state_{step:06d}.ckpt", "wb") as f:
pickle.dump(state, f)
|