nxmwxm's picture
Update app.py
3c3c9d8 verified
raw
history blame contribute delete
892 Bytes
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
model_repo_path = 'nxmwxm/answer_generator'
tokenizer_path = 'nxmwxm/answer_generator'
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo_path)
# Load the pipeline with your model and tokenizer
qa_pipeline = pipeline(
'question-answering',
model=model,
tokenizer=tokenizer
)
def generate_answer(question, context):
result = qa_pipeline(question=question, context=context)
return result.get('answer', 'No answer found')
st.title('Question Answering Model')
question = st.text_input('Enter your question:')
context = st.text_area('Enter context for the question:')
if st.button('Generate Answer'):
answer = generate_answer(question, context)
st.write('Answer:', answer)