import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline model_repo_path = 'nxmwxm/answer_generator' tokenizer_path = 'nxmwxm/answer_generator' # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_repo_path) # Load the pipeline with your model and tokenizer qa_pipeline = pipeline( 'question-answering', model=model, tokenizer=tokenizer ) def generate_answer(question, context): result = qa_pipeline(question=question, context=context) return result.get('answer', 'No answer found') st.title('Question Answering Model') question = st.text_input('Enter your question:') context = st.text_area('Enter context for the question:') if st.button('Generate Answer'): answer = generate_answer(question, context) st.write('Answer:', answer)