nyanko7's picture
Update modules/model.py
648b9d1
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import time
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function
from diffusers import DiffusionPipeline
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging, randn_tensor
import modules.safe as _
from safetensors.torch import load_file
xformers_available = False
try:
import xformers
xformers_available = True
except ImportError:
pass
EPSILON = 1e-6
exists = lambda val: val is not None
default = lambda val, d: val if exists(val) else d
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
def get_attention_scores(attn, query, key, attention_mask=None):
if attn.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(
query.shape[0],
query.shape[1],
key.shape[1],
dtype=query.dtype,
device=query.device,
),
query,
key.transpose(-1, -2),
beta=0,
alpha=attn.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if attn.upcast_softmax:
attention_scores = attention_scores.float()
return attention_scores
class CrossAttnProcessor(nn.Module):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size)
encoder_states = hidden_states
is_xattn = False
if encoder_hidden_states is not None:
is_xattn = True
img_state = encoder_hidden_states["img_state"]
encoder_states = encoder_hidden_states["states"]
weight_func = encoder_hidden_states["weight_func"]
sigma = encoder_hidden_states["sigma"]
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_states)
value = attn.to_v(encoder_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xattn and isinstance(img_state, dict):
# use torch.baddbmm method (slow)
attention_scores = get_attention_scores(attn, query, key, attention_mask)
w = img_state[sequence_length].to(query.device)
cross_attention_weight = weight_func(w, sigma, attention_scores)
attention_scores += torch.repeat_interleave(
cross_attention_weight, repeats=attn.heads, dim=0
)
# calc probs
attention_probs = attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
hidden_states = torch.bmm(attention_probs, value)
elif xformers_available:
hidden_states = xformers.ops.memory_efficient_attention(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attn_bias=attention_mask,
)
hidden_states = hidden_states.to(query.dtype)
else:
q_bucket_size = 512
k_bucket_size = 1024
# use flash-attention
hidden_states = FlashAttentionFunction.apply(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attention_mask,
False,
q_bucket_size,
k_bucket_size,
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ModelWrapper:
def __init__(self, model, alphas_cumprod):
self.model = model
self.alphas_cumprod = alphas_cumprod
def apply_model(self, *args, **kwargs):
if len(args) == 3:
encoder_hidden_states = args[-1]
args = args[:2]
if kwargs.get("cond", None) is not None:
encoder_hidden_states = kwargs.pop("cond")
return self.model(
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
).sample
class StableDiffusionPipeline(DiffusionPipeline):
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
):
super().__init__()
# get correct sigmas from LMS
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.setup_unet(self.unet)
self.setup_text_encoder()
def setup_text_encoder(self, n=1, new_encoder=None):
if new_encoder is not None:
self.text_encoder = new_encoder
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder)
self.prompt_parser.CLIP_stop_at_last_layers = n
def setup_unet(self, unet):
unet = unet.to(self.device)
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
if self.scheduler.prediction_type == "v_prediction":
self.k_diffusion_model = CompVisVDenoiser(model)
else:
self.k_diffusion_model = CompVisDenoiser(model)
def get_scheduler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling")
return getattr(sampling, scheduler_type)
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
uncond, cond = text_ids[0], text_ids[1]
img_state = []
if state is None:
return torch.FloatTensor(0)
for k, v in state.items():
if v["map"] is None:
continue
v_input = self.tokenizer(
k,
max_length=self.tokenizer.model_max_length,
truncation=True,
add_special_tokens=False,
).input_ids
dotmap = v["map"] < 255
out = dotmap.astype(float)
if v["mask_outsides"]:
out[out==0] = -1
arr = torch.from_numpy(
out * float(v["weight"]) * g_strength
)
img_state.append((v_input, arr))
if len(img_state) == 0:
return torch.FloatTensor(0)
w_tensors = dict()
cond = cond.tolist()
uncond = uncond.tolist()
for layer in self.unet.down_blocks:
c = int(len(cond))
w, h = img_state[0][1].shape
w_r, h_r = w // scale_ratio, h // scale_ratio
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
for v_as_tokens, img_where_color in img_state:
is_in = 0
ret = (
F.interpolate(
img_where_color.unsqueeze(0).unsqueeze(1),
scale_factor=1 / scale_ratio,
mode="bilinear",
align_corners=True,
)
.squeeze()
.reshape(-1, 1)
.repeat(1, len(v_as_tokens))
)
for idx, tok in enumerate(cond):
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
is_in = 1
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
for idx, tok in enumerate(uncond):
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
is_in = 1
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
if not is_in == 1:
print(f"tokens {v_as_tokens} not found in text")
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
scale_ratio *= 2
return w_tensors
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [
self.unet,
self.text_encoder,
self.vae,
self.safety_checker,
]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents.to(self.device, dtype=self.vae.dtype)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None
and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (batch_size, num_channels_latents, height // 8, width // 8)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(
shape, generator=generator, device="cpu", dtype=dtype
).to(device)
else:
latents = torch.randn(
shape, generator=generator, device=device, dtype=dtype
)
else:
# if latents.shape != shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
return latents
def preprocess(self, image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
image = [
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
None, :
]
for i in image
]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
@torch.no_grad()
def img2img(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[torch.Generator] = None,
image: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
latents=None,
strength=1.0,
pww_state=None,
pww_attn_weight=1.0,
sampler_name="",
sampler_opt={},
start_time=-1,
timeout=180,
scale_ratio=8.0,
):
sampler = self.get_scheduler(sampler_name)
if image is not None:
image = self.preprocess(image)
image = image.to(self.vae.device, dtype=self.vae.dtype)
init_latents = self.vae.encode(image).latent_dist.sample(generator)
latents = 0.18215 * init_latents
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
latents = latents.to(device, dtype=self.unet.dtype)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
init_timestep = (
int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
)
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
t_start = max(init_timestep - num_inference_steps, 0)
sigma_sched = sigmas[t_start:]
noise = randn_tensor(
latents.shape,
generator=generator,
device=device,
dtype=text_embeddings.dtype,
)
latents = latents.to(device)
latents = latents + noise * sigma_sched[0]
# 5. Prepare latent variables
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
img_state = self.encode_sketchs(
pww_state,
g_strength=pww_attn_weight,
text_ids=text_ids,
)
def model_fn(x, sigma):
if start_time > 0 and timeout > 0:
assert (time.time() - start_time) < timeout, "inference process timed out"
latent_model_input = torch.cat([x] * 2)
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
encoder_state = {
"img_state": img_state,
"states": text_embeddings,
"sigma": sigma[0],
"weight_func": weight_func,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=encoder_state
)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
return noise_pred
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler)
latents = sampler(model_fn, latents, **sampler_args)
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
return (image,)
def get_sigmas(self, steps, params):
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
steps += 1 if discard_next_to_last_sigma else 0
if params.get("scheduler", None) == "karras":
sigma_min, sigma_max = (
self.k_diffusion_model.sigmas[0].item(),
self.k_diffusion_model.sigmas[-1].item(),
)
sigmas = k_diffusion.sampling.get_sigmas_karras(
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
)
else:
sigmas = self.k_diffusion_model.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func):
extra_params_kwargs = {}
if "eta" in inspect.signature(func).parameters:
extra_params_kwargs["eta"] = eta
if "sigma_min" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_min"] = sigmas[0].item()
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = steps
else:
extra_params_kwargs["sigmas"] = sigmas
return extra_params_kwargs
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_i2i(self, sigmas, func):
extra_params_kwargs = {}
if "sigma_min" in inspect.signature(func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs["sigma_min"] = sigmas[-2]
if "sigma_max" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_max"] = sigmas[0]
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = len(sigmas) - 1
if "sigma_sched" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_sched"] = sigmas
if "sigmas" in inspect.signature(func).parameters:
extra_params_kwargs["sigmas"] = sigmas
return extra_params_kwargs
@torch.no_grad()
def txt2img(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_steps: Optional[int] = 1,
upscale=False,
upscale_x: float = 2.0,
upscale_method: str = "bicubic",
upscale_antialias: bool = False,
upscale_denoising_strength: int = 0.7,
pww_state=None,
pww_attn_weight=1.0,
sampler_name="",
sampler_opt={},
start_time=-1,
timeout=180,
):
sampler = self.get_scheduler(sampler_name)
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
# 4. Prepare timesteps
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents = latents * sigmas[0]
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
img_state = self.encode_sketchs(
pww_state,
g_strength=pww_attn_weight,
text_ids=text_ids,
)
def model_fn(x, sigma):
if start_time > 0 and timeout > 0:
assert (time.time() - start_time) < timeout, "inference process timed out"
latent_model_input = torch.cat([x] * 2)
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
encoder_state = {
"img_state": img_state,
"states": text_embeddings,
"sigma": sigma[0],
"weight_func": weight_func,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=encoder_state
)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
return noise_pred
extra_args = self.get_sampler_extra_args_t2i(
sigmas, eta, num_inference_steps, sampler
)
latents = sampler(model_fn, latents, **extra_args)
if upscale:
target_height = height * upscale_x
target_width = width * upscale_x
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=upscale_method,
antialias=upscale_antialias,
)
return self.img2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
latents=latents,
strength=upscale_denoising_strength,
sampler_name=sampler_name,
sampler_opt=sampler_opt,
pww_state=None,
pww_attn_weight=pww_attn_weight / 2,
)
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
return (image,)
class FlashAttentionFunction(Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
"""Algorithm 2 in the paper"""
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
scale = q.shape[-1] ** -0.5
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, "b n -> b 1 1 n")
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones(
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.0)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
min=EPSILON
)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = (
exp_row_max_diff * row_sums
+ exp_block_row_max_diff * block_row_sums
)
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
(exp_block_row_max_diff / new_row_sums) * exp_values
)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
lse = all_row_sums.log() + all_row_maxes
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, lse)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
"""Algorithm 4 in the paper"""
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, lse = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
lse.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones(
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
p = torch.exp(attn_weights - lsec)
if exists(row_mask):
p.masked_fill_(~row_mask, 0.0)
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None