nyanko7's picture
Create modules/safe.py
86562e4
# this code is adapted from the script contributed by anon from /h/
# modified, from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/safe.py
import io
import pickle
import collections
import sys
import traceback
import torch
import numpy
import _codecs
import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args):
out = _codecs.encode(*args)
return out
class RestrictedUnpickler(pickle.Unpickler):
extra_handler = None
def persistent_load(self, saved_id):
assert saved_id[0] == 'storage'
return TypedStorage()
def find_class(self, module, name):
if self.extra_handler is not None:
res = self.extra_handler(module, name)
if res is not None:
return res
if module == 'collections' and name == 'OrderedDict':
return getattr(collections, name)
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
return getattr(torch._utils, name)
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
return getattr(torch, name)
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
return getattr(torch.nn.modules.container, name)
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
return getattr(numpy.core.multiarray, name)
if module == 'numpy' and name in ['dtype', 'ndarray']:
return getattr(numpy, name)
if module == '_codecs' and name == 'encode':
return encode
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
import pytorch_lightning.callbacks
return pytorch_lightning.callbacks.model_checkpoint
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
import pytorch_lightning.callbacks.model_checkpoint
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
if module == "__builtin__" and name == 'set':
return set
# Forbid everything else.
raise Exception(f"global '{module}/{name}' is forbidden")
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
def check_zip_filenames(filename, names):
for name in names:
if allowed_zip_names_re.match(name):
continue
raise Exception(f"bad file inside {filename}: {name}")
def check_pt(filename, extra_handler):
try:
# new pytorch format is a zip file
with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist())
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
if len(data_pkl_filenames) == 0:
raise Exception(f"data.pkl not found in {filename}")
if len(data_pkl_filenames) > 1:
raise Exception(f"Multiple data.pkl found in {filename}")
with z.open(data_pkl_filenames[0]) as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
unpickler.load()
except zipfile.BadZipfile:
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
with open(filename, "rb") as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
for i in range(5):
unpickler.load()
def load(filename, *args, **kwargs):
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
"""
this function is intended to be used by extensions that want to load models with
some extra classes in them that the usual unpickler would find suspicious.
Use the extra_handler argument to specify a function that takes module and field name as text,
and returns that field's value:
```python
def extra(module, name):
if module == 'collections' and name == 'OrderedDict':
return collections.OrderedDict
return None
safe.load_with_extra('model.pt', extra_handler=extra)
```
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
definitely unsafe.
"""
try:
check_pt(filename, extra_handler)
except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("The file is most likely corrupted.", file=sys.stderr)
return None
except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
return None
return unsafe_torch_load(filename, *args, **kwargs)
class Extra:
"""
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
(because it's not your code making the torch.load call). The intended use is like this:
```
import torch
from modules import safe
def handler(module, name):
if module == 'torch' and name in ['float64', 'float16']:
return getattr(torch, name)
return None
with safe.Extra(handler):
x = torch.load('model.pt')
```
"""
def __init__(self, handler):
self.handler = handler
def __enter__(self):
global global_extra_handler
assert global_extra_handler is None, 'already inside an Extra() block'
global_extra_handler = self.handler
def __exit__(self, exc_type, exc_val, exc_tb):
global global_extra_handler
global_extra_handler = None
unsafe_torch_load = torch.load
torch.load = load
global_extra_handler = None