File size: 4,332 Bytes
8824f88
 
 
 
 
e8f48ed
8824f88
 
 
 
 
 
2213339
8824f88
bdbcb4a
 
245a9f1
8824f88
7680f74
8824f88
 
 
 
a5c0568
 
a174343
8824f88
 
 
 
 
 
 
31bf44d
0737a9d
 
34353a1
0737a9d
8824f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ac75a
bdbcb4a
c5ac75a
615fd05
9604647
8824f88
 
 
 
 
 
 
 
 
 
ecbb198
fe36abc
 
 
8824f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae2bb64
 
 
 
 
8824f88
bdbcb4a
 
ae2bb64
fe36abc
ae2bb64
 
 
8824f88
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python

import os
from threading import Thread
from typing import Iterator
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))

model_id = "utter-project/EuroLLM-1.7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.06,
    top_p: float = 0.95,
    top_k: int = 40,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(height=450,
                      label="utter-project/EuroLLM-1.7B-Instruct",
                      show_share_button=True,
                      ),
    cache_examples=False,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.05,
            maximum=1.2,
            step=0.05,
            value=0.2,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    examples=[
        ["Describe the significance of the Eiffel Tower in French culture and history."],
        ["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"],  # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature?
        ["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"],  # Polish: What are the most well-known Polish Christmas traditions?
        ["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"],  # German: What role did the Hanseatic League play in medieval Europe?
        ["日本の茶道の精神と作法について説明してください。"]  # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony.
    ],
    title="utter-project/EuroLLM-1.7B-Instruct",
    description="""utter-project/EuroLLM-1.7B-Instruct quick demo""",
    submit_btn="Generate",
    stop_btn="Stop",
    retry_btn="🔄 Retry",
    undo_btn="↩️ Undo",
    clear_btn="🗑️ Clear",
)

with gr.Blocks(css="style.css") as demo:
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()