File size: 20,474 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
from torch.utils.data import Dataset
import numpy as np
import json
import random
import logging
from os.path import join
from utils.bbox_helper import *
from utils.anchors import Anchors
import math
import sys
pyv = sys.version[0]
import cv2
if pyv[0] == '3':
    cv2.ocl.setUseOpenCL(False)

logger = logging.getLogger('global')


sample_random = random.Random()
sample_random.seed(123456)


class SubDataSet(object):
    def __init__(self, cfg):
        for string in ['root', 'anno']:
            if string not in cfg:
                raise Exception('SubDataSet need "{}"'.format(string))

        with open(cfg['anno']) as fin:
            logger.info("loading " + cfg['anno'])
            self.labels = self.filter_zero(json.load(fin), cfg)

            def isint(x):
                try:
                    int(x)
                    return True
                except:
                    return False

            # add frames args into labels
            to_del = []
            for video in self.labels:
                for track in self.labels[video]:
                    frames = self.labels[video][track]
                    frames = list(map(int, filter(lambda x: isint(x), frames.keys())))
                    frames.sort()
                    self.labels[video][track]['frames'] = frames
                    if len(frames) <= 0:
                        logger.info("warning {}/{} has no frames.".format(video, track))
                        to_del.append((video, track))

            # delete tracks with no frames
            for video, track in to_del:
                del self.labels[video][track]

            # delete videos with no valid track
            to_del = []
            for video in self.labels:
                if len(self.labels[video]) <= 0:
                    logger.info("warning {} has no tracks".format(video))
                    to_del.append(video)

            for video in to_del:
                del self.labels[video]

            self.videos = list(self.labels.keys())

            logger.info(cfg['anno'] + " loaded.")

        # default args
        self.root = "/"
        self.start = 0
        self.num = len(self.labels)
        self.num_use = self.num
        self.frame_range = 100
        self.mark = "vid"
        self.path_format = "{}.{}.{}.jpg"
        self.mask_format = "{}.{}.m.png"

        self.pick = []

        # input args
        self.__dict__.update(cfg)

        self.has_mask = self.mark in ['coco', 'ytb_vos']

        self.num_use = int(self.num_use)

        # shuffle
        self.shuffle()

    def filter_zero(self, anno, cfg):
        name = cfg.get('mark', '')

        out = {}
        tot = 0
        new = 0
        zero = 0

        for video, tracks in anno.items():
            new_tracks = {}
            for trk, frames in tracks.items():
                new_frames = {}
                for frm, bbox in frames.items():
                    tot += 1
                    if len(bbox) == 4:
                        x1, y1, x2, y2 = bbox
                        w, h = x2 - x1, y2 - y1
                    else:
                        w, h = bbox
                    if w == 0 or h == 0:
                        logger.info('Error, {name} {video} {trk} {bbox}'.format(**locals()))
                        zero += 1
                        continue
                    new += 1
                    new_frames[frm] = bbox

                if len(new_frames) > 0:
                    new_tracks[trk] = new_frames

            if len(new_tracks) > 0:
                out[video] = new_tracks

        return out

    def log(self):
        logger.info('SubDataSet {name} start-index {start} select [{select}/{num}] path {format}'.format(
            name=self.mark, start=self.start, select=self.num_use, num=self.num, format=self.path_format
        ))

    def shuffle(self):
        lists = list(range(self.start, self.start + self.num))

        m = 0
        pick = []
        while m < self.num_use:
            sample_random.shuffle(lists)
            pick += lists
            m += self.num

        self.pick = pick[:self.num_use]
        return self.pick

    def get_image_anno(self, video, track, frame):
        frame = "{:06d}".format(frame)
        image_path = join(self.root, video, self.path_format.format(frame, track, 'x'))
        image_anno = self.labels[video][track][frame]

        mask_path = join(self.root, video, self.mask_format.format(frame, track))

        return image_path, image_anno, mask_path

    def get_positive_pair(self, index):
        video_name = self.videos[index]
        video = self.labels[video_name]
        track = random.choice(list(video.keys()))
        track_info = video[track]

        frames = track_info['frames']

        if 'hard' not in track_info:
            template_frame = random.randint(0, len(frames)-1)

            left = max(template_frame - self.frame_range, 0)
            right = min(template_frame + self.frame_range, len(frames)-1) + 1
            search_range = frames[left:right]
            template_frame = frames[template_frame]
            search_frame = random.choice(search_range)
        else:
            search_frame = random.choice(track_info['hard'])
            left = max(search_frame - self.frame_range, 0)
            right = min(search_frame + self.frame_range, len(frames)-1) + 1  # python [left:right+1) = [left:right]
            template_range = frames[left:right]
            template_frame = random.choice(template_range)
            search_frame = frames[search_frame]

        return self.get_image_anno(video_name, track, template_frame), \
               self.get_image_anno(video_name, track, search_frame)

    def get_random_target(self, index=-1):
        if index == -1:
            index = random.randint(0, self.num-1)
        video_name = self.videos[index]
        video = self.labels[video_name]
        track = random.choice(list(video.keys()))
        track_info = video[track]

        frames = track_info['frames']
        frame = random.choice(frames)

        return self.get_image_anno(video_name, track, frame)


def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)):
    bbox = [float(x) for x in bbox]
    a = (out_sz-1) / (bbox[2]-bbox[0])
    b = (out_sz-1) / (bbox[3]-bbox[1])
    c = -a * bbox[0]
    d = -b * bbox[1]
    mapping = np.array([[a, 0, c],
                        [0, b, d]]).astype(np.float)
    crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding)
    return crop


class Augmentation:
    def __init__(self, cfg):
        # default args
        self.shift = 0
        self.scale = 0
        self.blur = 0  # False
        self.resize = False
        self.rgbVar = np.array([[-0.55919361,  0.98062831, - 0.41940627],
            [1.72091413,  0.19879334, - 1.82968581],
            [4.64467907,  4.73710203, 4.88324118]], dtype=np.float32)
        self.flip = 0

        self.eig_vec = np.array([
            [0.4009, 0.7192, -0.5675],
            [-0.8140, -0.0045, -0.5808],
            [0.4203, -0.6948, -0.5836],
        ], dtype=np.float32)

        self.eig_val = np.array([[0.2175, 0.0188, 0.0045]], np.float32)

        self.__dict__.update(cfg)

    @staticmethod
    def random():
        return random.random() * 2 - 1.0

    def blur_image(self, image):
        def rand_kernel():
            size = np.random.randn(1)
            size = int(np.round(size)) * 2 + 1
            if size < 0: return None
            if random.random() < 0.5: return None
            size = min(size, 45)
            kernel = np.zeros((size, size))
            c = int(size/2)
            wx = random.random()
            kernel[:, c] += 1. / size * wx
            kernel[c, :] += 1. / size * (1-wx)
            return kernel

        kernel = rand_kernel()

        if kernel is not None:
            image = cv2.filter2D(image, -1, kernel)
        return image

    def __call__(self, image, bbox, size, gray=False, mask=None):
        if gray:
            grayed = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            image = np.zeros((grayed.shape[0], grayed.shape[1], 3), np.uint8)
            image[:, :, 0] = image[:, :, 1] = image[:, :, 2] = grayed

        shape = image.shape

        crop_bbox = center2corner((shape[0]//2, shape[1]//2, size-1, size-1))

        param = {}
        if self.shift:
            param['shift'] = (Augmentation.random() * self.shift, Augmentation.random() * self.shift)

        if self.scale:
            param['scale'] = ((1.0 + Augmentation.random() * self.scale), (1.0 + Augmentation.random() * self.scale))

        crop_bbox, _ = aug_apply(Corner(*crop_bbox), param, shape)

        x1 = crop_bbox.x1
        y1 = crop_bbox.y1

        bbox = BBox(bbox.x1 - x1, bbox.y1 - y1,
                    bbox.x2 - x1, bbox.y2 - y1)

        if self.scale:
            scale_x, scale_y = param['scale']
            bbox = Corner(bbox.x1 / scale_x, bbox.y1 / scale_y, bbox.x2 / scale_x, bbox.y2 / scale_y)

        image = crop_hwc(image, crop_bbox, size)
        if not mask is None:
            mask = crop_hwc(mask, crop_bbox, size)

        offset = np.dot(self.rgbVar, np.random.randn(3, 1))
        offset = offset[::-1]  # bgr 2 rgb
        offset = offset.reshape(3)
        image = image - offset

        if self.blur > random.random():
            image = self.blur_image(image)

        if self.resize:
            imageSize = image.shape[:2]
            ratio = max(math.pow(random.random(), 0.5), 0.2)  # 25 ~ 255
            rand_size = (int(round(ratio*imageSize[0])), int(round(ratio*imageSize[1])))
            image = cv2.resize(image, rand_size)
            image = cv2.resize(image, tuple(imageSize))

        if self.flip and self.flip > Augmentation.random():
            image = cv2.flip(image, 1)
            mask = cv2.flip(mask, 1)
            width = image.shape[1]
            bbox = Corner(width - 1 - bbox.x2, bbox.y1, width - 1 - bbox.x1, bbox.y2)

        return image, bbox, mask


class AnchorTargetLayer:
    def __init__(self, cfg):
        self.thr_high = 0.6
        self.thr_low = 0.3
        self.negative = 16
        self.rpn_batch = 64
        self.positive = 16

        self.__dict__.update(cfg)

    def __call__(self, anchor, target, size, neg=False, need_iou=False):
        anchor_num = anchor.anchors.shape[0]

        cls = np.zeros((anchor_num, size, size), dtype=np.int64)
        cls[...] = -1  # -1 ignore 0 negative 1 positive
        delta = np.zeros((4, anchor_num, size, size), dtype=np.float32)
        delta_weight = np.zeros((anchor_num, size, size), dtype=np.float32)

        def select(position, keep_num=16):
            num = position[0].shape[0]
            if num <= keep_num:
                return position, num
            slt = np.arange(num)
            np.random.shuffle(slt)
            slt = slt[:keep_num]
            return tuple(p[slt] for p in position), keep_num

        if neg:
            l = size // 2 - 3
            r = size // 2 + 3 + 1

            cls[:, l:r, l:r] = 0

            neg, neg_num = select(np.where(cls == 0), self.negative)
            cls[:] = -1
            cls[neg] = 0

            if not need_iou:
                return cls, delta, delta_weight
            else:
                overlap = np.zeros((anchor_num, size, size), dtype=np.float32)
                return cls, delta, delta_weight, overlap

        tcx, tcy, tw, th = corner2center(target)

        anchor_box = anchor.all_anchors[0]
        anchor_center = anchor.all_anchors[1]
        x1, y1, x2, y2 = anchor_box[0], anchor_box[1], anchor_box[2], anchor_box[3]
        cx, cy, w, h = anchor_center[0], anchor_center[1], anchor_center[2], anchor_center[3]

        # delta
        delta[0] = (tcx - cx) / w
        delta[1] = (tcy - cy) / h
        delta[2] = np.log(tw / w)
        delta[3] = np.log(th / h)

        # IoU
        overlap = IoU([x1, y1, x2, y2], target)

        pos = np.where(overlap > self.thr_high)
        neg = np.where(overlap < self.thr_low)

        pos, pos_num = select(pos, self.positive)
        neg, neg_num = select(neg, self.rpn_batch - pos_num)

        cls[pos] = 1
        delta_weight[pos] = 1. / (pos_num + 1e-6)

        cls[neg] = 0

        if not need_iou:
            return cls, delta, delta_weight
        else:
            return cls, delta, delta_weight, overlap


class DataSets(Dataset):
    def __init__(self, cfg, anchor_cfg, num_epoch=1):
        super(DataSets, self).__init__()
        global logger
        logger = logging.getLogger('global')

        # anchors
        self.anchors = Anchors(anchor_cfg)

        # size
        self.template_size = 127
        self.origin_size = 127
        self.search_size = 255
        self.size = 17
        self.base_size = 0
        self.crop_size = 0

        if 'template_size' in cfg:
            self.template_size = cfg['template_size']
        if 'origin_size' in cfg:
            self.origin_size = cfg['origin_size']
        if 'search_size' in cfg:
            self.search_size = cfg['search_size']
        if 'base_size' in cfg:
            self.base_size = cfg['base_size']
        if 'size' in cfg:
            self.size = cfg['size']

        if (self.search_size - self.template_size) / self.anchors.stride + 1 + self.base_size != self.size:
            raise Exception("size not match!")  # TODO: calculate size online
        if 'crop_size' in cfg:
            self.crop_size = cfg['crop_size']
        self.template_small = False
        if 'template_small' in cfg and cfg['template_small']:
            self.template_small = True

        self.anchors.generate_all_anchors(im_c=self.search_size//2, size=self.size)

        if 'anchor_target' not in cfg:
            cfg['anchor_target'] = {}
        self.anchor_target = AnchorTargetLayer(cfg['anchor_target'])

        # data sets
        if 'datasets' not in cfg:
            raise(Exception('DataSet need "{}"'.format('datasets')))

        self.all_data = []
        start = 0
        self.num = 0
        for name in cfg['datasets']:
            dataset = cfg['datasets'][name]
            dataset['mark'] = name
            dataset['start'] = start

            dataset = SubDataSet(dataset)
            dataset.log()
            self.all_data.append(dataset)

            start += dataset.num  # real video number
            self.num += dataset.num_use  # the number used for subset shuffle

        # data augmentation
        aug_cfg = cfg['augmentation']
        self.template_aug = Augmentation(aug_cfg['template'])
        self.search_aug = Augmentation(aug_cfg['search'])
        self.gray = aug_cfg['gray']
        self.neg = aug_cfg['neg']
        self.inner_neg = 0 if 'inner_neg' not in aug_cfg else aug_cfg['inner_neg']

        self.pick = None  # list to save id for each img
        if 'num' in cfg:  # number used in training for all dataset
            self.num = int(cfg['num'])
        self.num *= num_epoch
        self.shuffle()

        self.infos = {
                'template': self.template_size,
                'search': self.search_size,
                'template_small': self.template_small,
                'gray': self.gray,
                'neg': self.neg,
                'inner_neg': self.inner_neg,
                'crop_size': self.crop_size,
                'anchor_target': self.anchor_target.__dict__,
                'num': self.num // num_epoch
                }
        logger.info('dataset informations: \n{}'.format(json.dumps(self.infos, indent=4)))

    def imread(self, path):
        img = cv2.imread(path)

        if self.origin_size == self.template_size:
            return img, 1.0

        def map_size(exe, size):
            return int(round(((exe + 1) / (self.origin_size + 1) * (size+1) - 1)))

        nsize = map_size(self.template_size, img.shape[1])

        img = cv2.resize(img, (nsize, nsize))

        return img, nsize / img.shape[1]

    def shuffle(self):
        pick = []
        m = 0
        while m < self.num:
            p = []
            for subset in self.all_data:
                sub_p = subset.shuffle()
                p += sub_p

            sample_random.shuffle(p)

            pick += p
            m = len(pick)
        self.pick = pick
        logger.info("shuffle done!")
        logger.info("dataset length {}".format(self.num))

    def __len__(self):
        return self.num

    def find_dataset(self, index):
        for dataset in self.all_data:
            if dataset.start + dataset.num > index:
                return dataset, index - dataset.start

    def __getitem__(self, index, debug=False):
        index = self.pick[index]
        dataset, index = self.find_dataset(index)

        gray = self.gray and self.gray > random.random()
        neg = self.neg and self.neg > random.random()

        if neg:
            template = dataset.get_random_target(index)
            if self.inner_neg and self.inner_neg > random.random():
                search = dataset.get_random_target()
            else:
                search = random.choice(self.all_data).get_random_target()
        else:
            template, search = dataset.get_positive_pair(index)

        def center_crop(img, size):
            shape = img.shape[1]
            if shape == size: return img
            c = shape // 2
            l = c - size // 2
            r = c + size // 2 + 1
            return img[l:r, l:r]

        template_image, scale_z = self.imread(template[0])

        if self.template_small:
            template_image = center_crop(template_image, self.template_size)

        search_image, scale_x = self.imread(search[0])

        if dataset.has_mask and not neg:
            search_mask = (cv2.imread(search[2], 0) > 0).astype(np.float32)
        else:
            search_mask = np.zeros(search_image.shape[:2], dtype=np.float32)

        if self.crop_size > 0:
            search_image = center_crop(search_image, self.crop_size)
            search_mask = center_crop(search_mask, self.crop_size)

        def toBBox(image, shape):
            imh, imw = image.shape[:2]
            if len(shape) == 4:
                w, h = shape[2]-shape[0], shape[3]-shape[1]
            else:
                w, h = shape
            context_amount = 0.5
            exemplar_size = self.template_size  # 127
            wc_z = w + context_amount * (w+h)
            hc_z = h + context_amount * (w+h)
            s_z = np.sqrt(wc_z * hc_z)
            scale_z = exemplar_size / s_z
            w = w*scale_z
            h = h*scale_z
            cx, cy = imw//2, imh//2
            bbox = center2corner(Center(cx, cy, w, h))
            return bbox

        template_box = toBBox(template_image, template[1])
        search_box = toBBox(search_image, search[1])

        template, _, _ = self.template_aug(template_image, template_box, self.template_size, gray=gray)
        search, bbox, mask = self.search_aug(search_image, search_box, self.search_size, gray=gray, mask=search_mask)

        def draw(image, box, name):
            image = image.copy()
            x1, y1, x2, y2 = map(lambda x: int(round(x)), box)
            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
            cv2.imwrite(name, image)

        if debug:
            draw(template_image, template_box, "debug/{:06d}_ot.jpg".format(index))
            draw(search_image, search_box, "debug/{:06d}_os.jpg".format(index))
            draw(template, _, "debug/{:06d}_t.jpg".format(index))
            draw(search, bbox, "debug/{:06d}_s.jpg".format(index))

        cls, delta, delta_weight = self.anchor_target(self.anchors, bbox, self.size, neg)
        if dataset.has_mask and not neg:
            mask_weight = cls.max(axis=0, keepdims=True)
        else:
            mask_weight = np.zeros([1, cls.shape[1], cls.shape[2]], dtype=np.float32)

        template, search = map(lambda x: np.transpose(x, (2, 0, 1)).astype(np.float32), [template, search])
        
        mask = (np.expand_dims(mask, axis=0) > 0.5) * 2 - 1  # 1*H*W

        return template, search, cls, delta, delta_weight, np.array(bbox, np.float32), \
               np.array(mask, np.float32), np.array(mask_weight, np.float32)