Spaces:
Running
on
T4
Running
on
T4
File size: 19,483 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
from torch.utils.data import Dataset
import numpy as np
import json
import random
import logging
from os.path import join
from utils.bbox_helper import *
from utils.anchors import Anchors
import math
import sys
pyv = sys.version[0]
import cv2
if pyv[0] == '3':
cv2.ocl.setUseOpenCL(False)
logger = logging.getLogger('global')
sample_random = random.Random()
sample_random.seed(123456)
class SubDataSet(object):
def __init__(self, cfg):
for string in ['root', 'anno']:
if string not in cfg:
raise Exception('SubDataSet need "{}"'.format(string))
with open(cfg['anno']) as fin:
logger.info("loading " + cfg['anno'])
self.labels = self.filter_zero(json.load(fin), cfg)
def isint(x):
try:
int(x)
return True
except:
return False
# add frames args into labels
to_del = []
for video in self.labels:
for track in self.labels[video]:
frames = self.labels[video][track]
frames = list(map(int, filter(lambda x: isint(x), frames.keys())))
frames.sort()
self.labels[video][track]['frames'] = frames
if len(frames) <= 0:
logger.info("warning {}/{} has no frames.".format(video, track))
to_del.append((video, track))
# delete tracks with no frames
for video, track in to_del:
del self.labels[video][track]
# delete videos with no valid track
to_del = []
for video in self.labels:
if len(self.labels[video]) <= 0:
logger.info("warning {} has no tracks".format(video))
to_del.append(video)
for video in to_del:
del self.labels[video]
self.videos = list(self.labels.keys())
logger.info(cfg['anno'] + " loaded.")
# default args
self.root = "/"
self.start = 0
self.num = len(self.labels)
self.num_use = self.num
self.frame_range = 100
self.mark = "vid"
self.path_format = "{}.{}.{}.jpg"
self.pick = []
# input args
self.__dict__.update(cfg)
self.num_use = int(self.num_use)
# shuffle
self.shuffle()
def filter_zero(self, anno, cfg):
name = cfg.get('mark', '')
out = {}
tot = 0
new = 0
zero = 0
for video, tracks in anno.items():
new_tracks = {}
for trk, frames in tracks.items():
new_frames = {}
for frm, bbox in frames.items():
tot += 1
if len(bbox) == 4:
x1, y1, x2, y2 = bbox
w, h = x2 - x1, y2 -y1
else:
w, h= bbox
if w == 0 or h == 0:
logger.info('Error, {name} {video} {trk} {bbox}'.format(**locals()))
zero += 1
continue
new += 1
new_frames[frm] = bbox
if len(new_frames) > 0:
new_tracks[trk] = new_frames
if len(new_tracks) > 0:
out[video] = new_tracks
return out
def log(self):
logger.info('SubDataSet {name} start-index {start} select [{select}/{num}] path {format}'.format(
name=self.mark, start=self.start, select=self.num_use, num=self.num, format=self.path_format
))
def shuffle(self):
lists = list(range(self.start, self.start + self.num))
m = 0
pick = []
while m < self.num_use:
sample_random.shuffle(lists)
pick += lists
m += self.num
self.pick = pick[:self.num_use]
return self.pick
def get_image_anno(self, video, track, frame):
frame = "{:06d}".format(frame)
image_path = join(self.root, video, self.path_format.format(frame, track, 'x'))
image_anno = self.labels[video][track][frame]
return image_path, image_anno
def get_positive_pair(self, index):
video_name = self.videos[index]
video = self.labels[video_name]
track = random.choice(list(video.keys()))
track_info = video[track]
frames = track_info['frames']
if 'hard' not in track_info:
template_frame = random.randint(0, len(frames)-1)
left = max(template_frame - self.frame_range, 0)
right = min(template_frame + self.frame_range, len(frames)-1) + 1
search_range = frames[left:right]
template_frame = frames[template_frame]
search_frame = random.choice(search_range)
else:
search_frame = random.choice(track_info['hard'])
left = max(search_frame - self.frame_range, 0)
right = min(search_frame + self.frame_range, len(frames)-1) + 1 # python [left:right+1) = [left:right]
template_range = frames[left:right]
template_frame = random.choice(template_range)
search_frame = frames[search_frame]
return self.get_image_anno(video_name, track, template_frame), \
self.get_image_anno(video_name, track, search_frame)
def get_random_target(self, index=-1):
if index == -1:
index = random.randint(0, self.num-1)
video_name = self.videos[index]
video = self.labels[video_name]
track = random.choice(list(video.keys()))
track_info = video[track]
frames = track_info['frames']
frame = random.choice(frames)
return self.get_image_anno(video_name, track, frame)
def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)):
bbox = [float(x) for x in bbox]
a = (out_sz-1) / (bbox[2]-bbox[0])
b = (out_sz-1) / (bbox[3]-bbox[1])
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding)
return crop
class Augmentation:
def __init__(self, cfg):
# default args
self.shift = 0
self.scale = 0
self.blur = 0 #False
self.resize = False
self.rgbVar = np.array([[-0.55919361, 0.98062831, - 0.41940627],
[1.72091413, 0.19879334, - 1.82968581],
[4.64467907, 4.73710203, 4.88324118]], dtype=np.float32)
self.flip = 0
self.eig_vec = np.array([
[0.4009, 0.7192, -0.5675],
[-0.8140, -0.0045, -0.5808],
[0.4203, -0.6948, -0.5836],
], dtype=np.float32)
self.eig_val = np.array([[0.2175, 0.0188, 0.0045]], np.float32)
self.__dict__.update(cfg)
@staticmethod
def random():
return random.random() * 2 - 1.0
def blur_image(self, image):
def rand_kernel():
size = np.random.randn(1)
size = int(np.round(size)) * 2 + 1
if size < 0: return None
if random.random() < 0.5: return None
size = min(size, 45)
kernel = np.zeros((size, size))
c = int(size/2)
wx = random.random()
kernel[:, c] += 1. / size * wx
kernel[c, :] += 1. / size * (1-wx)
return kernel
kernel = rand_kernel()
if kernel is not None:
image = cv2.filter2D(image, -1, kernel)
return image
def __call__(self, image, bbox, size, gray=False):
if gray:
grayed = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = np.zeros((grayed.shape[0], grayed.shape[1], 3), np.uint8)
image[:, :, 0] = image[:, :, 1] = image[:, :, 2] = grayed
shape = image.shape
crop_bbox = center2corner((shape[0]//2, shape[1]//2, size-1, size-1))
param = {}
if self.shift:
param['shift'] = (Augmentation.random() * self.shift, Augmentation.random() * self.shift)
if self.scale:
param['scale'] = ((1.0 + Augmentation.random() * self.scale), (1.0 + Augmentation.random() * self.scale))
crop_bbox, _ = aug_apply(Corner(*crop_bbox), param, shape)
x1 = crop_bbox.x1
y1 = crop_bbox.y1
bbox = BBox(bbox.x1 - x1, bbox.y1 - y1,
bbox.x2 - x1, bbox.y2 - y1)
if self.scale:
scale_x, scale_y = param['scale']
bbox = Corner(bbox.x1 / scale_x, bbox.y1 / scale_y, bbox.x2 / scale_x, bbox.y2 / scale_y)
image = crop_hwc(image, crop_bbox, size)
offset = np.dot(self.rgbVar, np.random.randn(3, 1))
offset = offset[::-1] # bgr 2 rgb
offset = offset.reshape(3)
image = image - offset
if self.blur > random.random():
image = self.blur_image(image)
if self.resize:
imageSize = image.shape[:2]
ratio = max(math.pow(random.random(), 0.5), 0.2) # 25 ~ 255
rand_size = (int(round(ratio*imageSize[0])), int(round(ratio*imageSize[1])))
image = cv2.resize(image, rand_size)
image = cv2.resize(image, tuple(imageSize))
if self.flip and self.flip > Augmentation.random():
image = cv2.flip(image, 1)
width = image.shape[1]
bbox = Corner(width - 1 - bbox.x2, bbox.y1, width - 1 - bbox.x1, bbox.y2)
return image, bbox
class AnchorTargetLayer:
def __init__(self, cfg):
self.thr_high = 0.6
self.thr_low = 0.3
self.negative = 16
self.rpn_batch = 64
self.positive = 16
self.__dict__.update(cfg)
def __call__(self, anchor, target, size, neg=False, need_iou=False):
anchor_num = anchor.anchors.shape[0]
cls = np.zeros((anchor_num, size, size), dtype=np.int64)
cls[...] = -1 # -1 ignore 0 negative 1 positive
delta = np.zeros((4, anchor_num, size, size), dtype=np.float32)
delta_weight = np.zeros((anchor_num, size, size), dtype=np.float32)
def select(position, keep_num=16):
num = position[0].shape[0]
if num <= keep_num:
return position, num
slt = np.arange(num)
np.random.shuffle(slt)
slt = slt[:keep_num]
return tuple(p[slt] for p in position), keep_num
if neg:
l = size // 2 - 3
r = size // 2 + 3 + 1
cls[:, l:r, l:r] = 0
neg, neg_num = select(np.where(cls == 0), self.negative)
cls[:] = -1
cls[neg] = 0
if not need_iou:
return cls, delta, delta_weight
else:
overlap = np.zeros((anchor_num, size, size), dtype=np.float32)
return cls, delta, delta_weight, overlap
tcx, tcy, tw, th = corner2center(target)
anchor_box = anchor.all_anchors[0]
anchor_center = anchor.all_anchors[1]
x1, y1, x2, y2 = anchor_box[0], anchor_box[1], anchor_box[2], anchor_box[3]
cx, cy, w, h = anchor_center[0], anchor_center[1], anchor_center[2], anchor_center[3]
# delta
delta[0] = (tcx - cx) / w
delta[1] = (tcy - cy) / h
delta[2] = np.log(tw / w)
delta[3] = np.log(th / h)
# IoU
overlap = IoU([x1, y1, x2, y2], target)
pos = np.where(overlap > self.thr_high)
neg = np.where(overlap < self.thr_low)
pos, pos_num = select(pos, self.positive)
neg, neg_num = select(neg, self.rpn_batch - pos_num)
cls[pos] = 1
delta_weight[pos] = 1. / (pos_num + 1e-6)
cls[neg] = 0
if not need_iou:
return cls, delta, delta_weight
else:
return cls, delta, delta_weight, overlap
class DataSets(Dataset):
def __init__(self, cfg, anchor_cfg, num_epoch=1):
super(DataSets, self).__init__()
global logger
logger = logging.getLogger('global')
# anchors
self.anchors = Anchors(anchor_cfg)
# size
self.template_size = 127
self.origin_size = 127
self.search_size = 255
self.size = 17
self.base_size = 0
self.crop_size = 0
if 'template_size' in cfg:
self.template_size = cfg['template_size']
if 'origin_size' in cfg:
self.origin_size = cfg['origin_size']
if 'search_size' in cfg:
self.search_size = cfg['search_size']
if 'base_size' in cfg:
self.base_size = cfg['base_size']
if 'size' in cfg:
self.size = cfg['size']
if (self.search_size - self.template_size) / self.anchors.stride + 1 + self.base_size != self.size:
raise Exception("size not match!") # TODO: calculate size online
if 'crop_size' in cfg:
self.crop_size = cfg['crop_size']
self.template_small = False
if 'template_small' in cfg and cfg['template_small']:
self.template_small = True
self.anchors.generate_all_anchors(im_c=self.search_size//2, size=self.size)
if 'anchor_target' not in cfg:
cfg['anchor_target'] = {}
self.anchor_target = AnchorTargetLayer(cfg['anchor_target'])
# data sets
if 'datasets' not in cfg:
raise(Exception('DataSet need "{}"'.format('datasets')))
self.all_data = []
start = 0
self.num = 0
for name in cfg['datasets']:
dataset = cfg['datasets'][name]
dataset['mark'] = name
dataset['start'] = start
dataset = SubDataSet(dataset)
dataset.log()
self.all_data.append(dataset)
start += dataset.num # real video number
self.num += dataset.num_use # the number used for subset shuffle
# data augmentation
aug_cfg = cfg['augmentation']
self.template_aug = Augmentation(aug_cfg['template'])
self.search_aug = Augmentation(aug_cfg['search'])
self.gray = aug_cfg['gray']
self.neg = aug_cfg['neg']
self.inner_neg = 0 if 'inner_neg' not in aug_cfg else aug_cfg['inner_neg']
self.pick = None # list to save id for each img
if 'num' in cfg: # number used in training for all dataset
self.num = int(cfg['num'])
self.num *= num_epoch
self.shuffle()
self.infos = {
'template': self.template_size,
'search': self.search_size,
'template_small': self.template_small,
'gray': self.gray,
'neg': self.neg,
'inner_neg': self.inner_neg,
'crop_size': self.crop_size,
'anchor_target': self.anchor_target.__dict__,
'num': self.num // num_epoch
}
logger.info('dataset informations: \n{}'.format(json.dumps(self.infos, indent=4)))
def imread(self, path):
img = cv2.imread(path)
if self.origin_size == self.template_size:
return img, 1.0
def map_size(exe, size):
return int(round(((exe + 1) / (self.origin_size + 1) * (size+1) - 1)))
nsize = map_size(self.template_size, img.shape[1])
img = cv2.resize(img, (nsize, nsize))
return img, nsize / img.shape[1]
def shuffle(self):
pick = []
m = 0
while m < self.num:
p = []
for subset in self.all_data:
sub_p = subset.shuffle()
p += sub_p
sample_random.shuffle(p)
pick += p
m = len(pick)
self.pick = pick
logger.info("shuffle done!")
logger.info("dataset length {}".format(self.num))
def __len__(self):
return self.num
def find_dataset(self, index):
for dataset in self.all_data:
if dataset.start + dataset.num > index:
return dataset, index - dataset.start
def __getitem__(self, index, debug=False):
index = self.pick[index]
dataset, index = self.find_dataset(index)
gray = self.gray and self.gray > random.random()
neg = self.neg and self.neg > random.random()
if neg:
template = dataset.get_random_target(index)
if self.inner_neg and self.inner_neg > random.random():
search = dataset.get_random_target()
else:
search = random.choice(self.all_data).get_random_target()
else:
template, search = dataset.get_positive_pair(index)
def center_crop(img, size):
shape = img.shape[1]
if shape == size: return img
c = shape // 2
l = c - size // 2
r = c + size // 2 + 1
return img[l:r, l:r]
template_image, scale_z = self.imread(template[0])
if self.template_small:
template_image = center_crop(template_image, self.template_size)
search_image, scale_x = self.imread(search[0])
if self.crop_size > 0:
search_image = center_crop(search_image, self.crop_size)
def toBBox(image, shape):
imh, imw = image.shape[:2]
if len(shape) == 4:
w, h = shape[2]-shape[0], shape[3]-shape[1]
else:
w, h = shape
context_amount = 0.5
exemplar_size = self.template_size # 127
wc_z = w + context_amount * (w+h)
hc_z = h + context_amount * (w+h)
s_z = np.sqrt(wc_z * hc_z)
scale_z = exemplar_size / s_z
w = w*scale_z
h = h*scale_z
cx, cy = imw//2, imh//2
bbox = center2corner(Center(cx, cy, w, h))
return bbox
template_box = toBBox(template_image, template[1])
search_box = toBBox(search_image, search[1])
template, _ = self.template_aug(template_image, template_box, self.template_size, gray=gray)
search, bbox = self.search_aug(search_image, search_box, self.search_size, gray=gray)
def draw(image, box, name):
image = image.copy()
x1, y1, x2, y2 = map(lambda x: int(round(x)), box)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
cv2.imwrite(name, image)
if debug:
draw(template_image, template_box, "debug/{:06d}_ot.jpg".format(index))
draw(search_image, search_box, "debug/{:06d}_os.jpg".format(index))
draw(template, _, "debug/{:06d}_t.jpg".format(index))
draw(search, bbox, "debug/{:06d}_s.jpg".format(index))
cls, delta, delta_weight = self.anchor_target(self.anchors, bbox, self.size, neg)
template, search = map(lambda x: np.transpose(x, (2, 0, 1)).astype(np.float32), [template, search])
return template, search, cls, delta, delta_weight, np.array(bbox, np.float32)
|