Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
def calculate_ssim(img1, img2): | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def ssim(img1, img2): | |
'''calculate SSIM | |
the same outputs as MATLAB's | |
img1, img2: [0, 255] | |
''' | |
if not img1.shape == img2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if img1.ndim == 2: | |
return calculate_ssim(img1, img2) | |
elif img1.ndim == 3: | |
if img1.shape[2] == 3: | |
ssims = [] | |
for i in range(3): | |
ssims.append(calculate_ssim(img1[:, :, i], img2[:, :, i])) | |
return np.array(ssims).mean() | |
elif img1.shape[2] == 1: | |
return calculate_ssim(np.squeeze(img1), np.squeeze(img2)) | |
else: | |
raise ValueError('Wrong input image dimensions.') |