Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import functools | |
from .BaseNetwork import BaseNetwork | |
from models.utils.reconstructionLayers import make_layer, ResidualBlock_noBN | |
class Model(nn.Module): | |
def __init__(self, config): | |
super(Model, self).__init__() | |
self.net = P3DNet(config['num_flows'], config['cnum'], config['in_channel'], config['PASSMASK'], | |
config['use_residual'], | |
config['resBlocks'], config['use_bias'], config['conv_type'], config['init_weights']) | |
def forward(self, flows, masks, edges=None): | |
ret = self.net(flows, masks, edges) | |
return ret | |
class P3DNet(BaseNetwork): | |
def __init__(self, num_flows, num_feats, in_channels, passmask, use_residual, res_blocks, | |
use_bias, conv_type, init_weights): | |
super().__init__(conv_type) | |
self.passmask = passmask | |
self.encoder2 = nn.Sequential( | |
nn.ReplicationPad2d(2), | |
self.ConvBlock2d(in_channels, num_feats, kernel_size=5, stride=1, padding=0, bias=use_bias, norm=None), | |
self.ConvBlock2d(num_feats, num_feats * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=None) | |
) | |
self.encoder4 = nn.Sequential( | |
self.ConvBlock2d(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None), | |
self.ConvBlock2d(num_feats * 2, num_feats * 4, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=None) | |
) | |
residualBlock = functools.partial(ResidualBlock_noBN, nf=num_feats * 4) | |
self.res_blocks = make_layer(residualBlock, res_blocks) | |
self.resNums = res_blocks | |
# dilation convolution to enlarge the receptive field | |
self.middle = nn.Sequential( | |
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=8, bias=use_bias, | |
dilation=8, norm=None), | |
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=4, bias=use_bias, | |
dilation=4, norm=None), | |
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=2, bias=use_bias, | |
dilation=2, norm=None), | |
self.ConvBlock2d(num_feats * 4, num_feats * 4, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
dilation=1, norm=None), | |
) | |
self.decoder2 = nn.Sequential( | |
self.DeconvBlock2d(num_feats * 8, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None), | |
self.ConvBlock2d(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None), | |
self.ConvBlock2d(num_feats * 2, num_feats * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None) | |
) | |
self.decoder = nn.Sequential( | |
self.DeconvBlock2d(num_feats * 4, num_feats, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None), | |
self.ConvBlock2d(num_feats, num_feats // 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None), | |
self.ConvBlock2d(num_feats // 2, 2, kernel_size=3, stride=1, padding=1, bias=use_bias, | |
norm=None) | |
) | |
self.edgeDetector = EdgeDetection(conv_type) | |
if init_weights: | |
self.init_weights() | |
def forward(self, flows, masks, edges=None): | |
if self.passmask: | |
inputs = torch.cat((flows, masks), dim=1) | |
else: | |
inputs = flows | |
if edges is not None: | |
inputs = torch.cat((inputs, edges), dim=1) | |
e2 = self.encoder2(inputs) | |
e4 = self.encoder4(e2) | |
if self.resNums > 0: | |
e4_res = self.res_blocks(e4) | |
else: | |
e4_res = e4 | |
c_e4_filled = self.middle(e4_res) | |
c_e4 = torch.cat((c_e4_filled, e4), dim=1) | |
c_e2Post = self.decoder2(c_e4) | |
c_e2 = torch.cat((c_e2Post, e2), dim=1) | |
output = self.decoder(c_e2) | |
edge = self.edgeDetector(output) | |
return output, edge | |
class EdgeDetection(BaseNetwork): | |
def __init__(self, conv_type, in_channels=2, out_channels=1, mid_channels=16): | |
super(EdgeDetection, self).__init__(conv_type) | |
self.projection = self.ConvBlock2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=1, | |
padding=1, norm=None) | |
self.mid_layer_1 = self.ConvBlock2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, | |
stride=1, padding=1, norm=None) | |
self.mid_layer_2 = self.ConvBlock2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, | |
stride=1, padding=1, activation=None, norm=None) | |
self.l_relu = nn.LeakyReLU() | |
self.out_layer = self.ConvBlock2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, | |
activation=None, norm=None) | |
def forward(self, flow): | |
flow = self.projection(flow) | |
edge = self.mid_layer_1(flow) | |
edge = self.mid_layer_2(edge) | |
edge = self.l_relu(flow + edge) | |
edge = self.out_layer(edge) | |
edge = torch.sigmoid(edge) | |
return edge | |