Spaces:
Runtime error
Runtime error
import streamlit as st | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
import tensorflow as tf | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("okeowo1014/catsanddogs") | |
# Load the saved model (replace with your model filename) | |
# model = tf.keras.models.load_model('cat_dog_classifier.keras') | |
# Image dimensions for the model | |
img_width, img_height = 224, 224 | |
def preprocess_image(img): | |
"""Preprocesses an image for prediction.""" | |
img = cv2.resize(img, (img_width, img_height)) | |
img = img.astype('float32') / 255.0 | |
img = np.expand_dims(img, axis=0) | |
return img | |
def predict_class(image): | |
"""Predicts image class and probabilities.""" | |
preprocessed_img = preprocess_image(image) | |
prediction = model.predict(preprocessed_img) | |
class_names = ['cat', 'dog'] # Adjust class names according to your model | |
return class_names[np.argmax(prediction)], np.max(prediction) | |
def display_results(class_name, probability): | |
"""Displays prediction results in a progress bar style.""" | |
st.write(f"**Predicted Class:** {class_name}") | |
# Create a progress bar using st.progress | |
progress = st.progress(0) | |
for i in range(100): | |
progress.progress(i + 1) | |
if i == int(probability * 100): | |
break | |
st.write(f"**Probability:** {probability:.2f}") | |
def main(): | |
"""Main app function.""" | |
st.title("Image Classifier") | |
st.write("Upload an image to classify it as cat or dog.") | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
if uploaded_file is not None: | |
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
predicted_class, probability = predict_class(image) | |
display_results(predicted_class, probability) | |
main() | |
# if __name__ == '__main__': | |
# main() | |