okeowo1014 commited on
Commit
a7b6739
1 Parent(s): e1ede78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -3
app.py CHANGED
@@ -1,4 +1,57 @@
1
  import streamlit as st
2
- # import train3
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x **x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import numpy as np
3
+ from tensorflow.keras.preprocessing import image
4
+ from tensorflow.keras.models import load_model
5
+
6
+ # Define constants
7
+ IMG_WIDTH, IMG_HEIGHT = 224, 224 # Adjust if your model requires different dimensions
8
+ model_path = 'dog_cat_classifier_model.keras' # Replace with your model path
9
+
10
+ # Load the model (outside the main app function for efficiency)
11
+ model = load_model(model_path)
12
+
13
+ def main():
14
+ """
15
+ Streamlit app for image classification with user-friendly interface.
16
+ """
17
+
18
+ # Title and description
19
+ st.title("Intriguing Image Classifier")
20
+ st.write("Upload an image and discover its most likely category along with probabilities in a compelling way!")
21
+
22
+ # File uploader and sidebar for image selection
23
+ uploaded_file = st.file_uploader("Choose an Image", type=['jpg', 'jpeg', 'png'])
24
+ image_selected = st.sidebar.selectbox("Select Image", (None, "Uploaded Image"))
25
+
26
+ if uploaded_file is not None:
27
+ image_display = image.load_img(uploaded_file, target_size=(IMG_WIDTH, IMG_HEIGHT))
28
+ st.image(image_display, caption="Uploaded Image", use_column_width=True)
29
+ image_selected = "Uploaded Image"
30
+
31
+ # Preprocess image if one is selected
32
+ if image_selected:
33
+ img_array = image.img_to_array(image_display)
34
+ img_array = np.expand_dims(img_array, axis=0)
35
+ img_array /= 255.0 # Rescale pixel values to [0, 1]
36
+
37
+ # Make predictions and get class labels (assuming your model outputs probabilities)
38
+ predictions = model.predict(img_array)
39
+ class_labels = [f"{label}: {prob:.2%}" for label, prob in zip(get_class_labels(model), predictions[0])]
40
+
41
+ # Display predictions in an intriguing way (replace with your preferred method)
42
+ st.header("Predictions:")
43
+ progress_bar_width = 800 # Adjust for desired visual style
44
+
45
+ for label, prob in zip(class_labels, predictions[0]):
46
+ progress_bar = st.progress(label)
47
+ progress_bar.progress(int(prob * 100)) # Update progress bar based on probability
48
+
49
+ # Function to retrieve class labels from the model (replace if your model structure is different)
50
+ def get_class_labels(model):
51
+ class_names = list(model.class_names) # Assuming class names are directly accessible
52
+ return class_names
53
+
54
+ main()
55
+
56
+ # if __name__ == '__main__':
57
+ # main()