Spaces:
Sleeping
Sleeping
File size: 2,053 Bytes
a8ad0c2 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 76baae0 6dc2347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import streamlit as st
import train
# import tr
# import prd
x = st.slider('Select a value')
st.write(x, 'squared is', x * 86)
# import streamlit as st
# import cv2
# import numpy as np
# from tensorflow.keras.preprocessing import image
# import tensorflow as tf
# from huggingface_hub import from_pretrained_keras
# model = from_pretrained_keras("okeowo1014/catsanddogsmodel")
# # Load the saved model (replace with your model filename)
# # model = tf.keras.models.load_model('cat_dog_classifier.keras')
# # Image dimensions for the model
# img_width, img_height = 224, 224
# def preprocess_image(img):
# """Preprocesses an image for prediction."""
# img = cv2.resize(img, (img_width, img_height))
# img = img.astype('float32') / 255.0
# img = np.expand_dims(img, axis=0)
# return img
# def predict_class(image):
# """Predicts image class and probabilities."""
# preprocessed_img = preprocess_image(image)
# prediction = model.predict(preprocessed_img)
# class_names = ['cat', 'dog'] # Adjust class names according to your model
# return class_names[np.argmax(prediction)], np.max(prediction)
# def display_results(class_name, probability):
# """Displays prediction results in a progress bar style."""
# st.write(f"**Predicted Class:** {class_name}")
# # Create a progress bar using st.progress
# progress = st.progress(0)
# for i in range(100):
# progress.progress(i + 1)
# if i == int(probability * 100):
# break
# st.write(f"**Probability:** {probability:.2f}")
# def main():
# """Main app function."""
# st.title("Image Classifier")
# st.write("Upload an image to classify it as cat or dog.")
# uploaded_file = st.file_uploader("Choose an image...", type="jpg")
# if uploaded_file is not None:
# image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
# st.image(image, caption="Uploaded Image", use_column_width=True)
# predicted_class, probability = predict_class(image)
# display_results(predicted_class, probability)
# main() |