Spaces:
Sleeping
Sleeping
okeowo1014
commited on
Commit
•
257a51b
1
Parent(s):
63d582a
Update tr.py
Browse files
tr.py
CHANGED
@@ -1,33 +1,49 @@
|
|
1 |
-
import
|
2 |
-
from tensorflow.keras.layers import Dense, Embedding, GlobalAveragePooling1D
|
3 |
from tensorflow.keras.models import Sequential
|
4 |
-
from
|
|
|
|
|
|
|
5 |
|
6 |
# Sample data for sentiment analysis
|
7 |
texts = ["I love deep learning!", "I hate Mondays.", "This movie is fantastic.", "The weather is terrible."]
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
|
20 |
|
21 |
# Train the model
|
22 |
-
model.fit(
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Save the model
|
25 |
-
model.
|
26 |
|
27 |
-
#
|
28 |
-
loaded_model =
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
1 |
+
import numpy as np
|
|
|
2 |
from tensorflow.keras.models import Sequential
|
3 |
+
from tensorflow.keras.layers import Dense, Embedding, GlobalAveragePooling1D
|
4 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
|
8 |
# Sample data for sentiment analysis
|
9 |
texts = ["I love deep learning!", "I hate Mondays.", "This movie is fantastic.", "The weather is terrible."]
|
10 |
+
labels = np.array([1, 0, 1, 0]) # 1 for positive sentiment, 0 for negative sentiment
|
11 |
|
12 |
+
# Tokenize the texts
|
13 |
+
tokenizer = Tokenizer(num_words=1000, oov_token='<OOV>')
|
14 |
+
tokenizer.fit_on_texts(texts)
|
15 |
+
sequences = tokenizer.texts_to_sequences(texts)
|
16 |
+
padded_sequences = pad_sequences(sequences, maxlen=10, padding='post', truncating='post')
|
17 |
|
18 |
+
# Split data into training and testing sets
|
19 |
+
X_train, X_test, y_train, y_test = train_test_split(padded_sequences, labels, test_size=0.2, random_state=42)
|
|
|
20 |
|
21 |
+
# Build the model
|
22 |
+
model = Sequential([
|
23 |
+
Embedding(input_dim=1000, output_dim=16, input_length=10),
|
24 |
+
GlobalAveragePooling1D(),
|
25 |
+
Dense(16, activation='relu'),
|
26 |
+
Dense(1, activation='sigmoid')
|
27 |
+
])
|
28 |
|
29 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
30 |
|
31 |
# Train the model
|
32 |
+
model.fit(X_train, y_train, epochs=5, batch_size=2)
|
33 |
+
|
34 |
+
# Evaluate the model
|
35 |
+
loss, accuracy = model.evaluate(X_test, y_test)
|
36 |
+
print(f'Accuracy: {accuracy * 100:.2f}%')
|
37 |
|
38 |
+
# Save the model
|
39 |
+
model.save('my_custom_text_classifier')
|
40 |
|
41 |
+
# Later, load the model and make predictions
|
42 |
+
loaded_model = tf.keras.models.load_model('my_custom_text_classifier')
|
43 |
|
44 |
+
# Example prediction
|
45 |
+
new_texts = ["I'm feeling great!", "This book is boring."]
|
46 |
+
sequences = tokenizer.texts_to_sequences(new_texts)
|
47 |
+
padded_sequences = pad_sequences(sequences, maxlen=10, padding='post', truncating='post')
|
48 |
+
predictions = loaded_model.predict(padded_sequences)
|
49 |
+
print(predictions)
|