import streamlit as st import train # import tr # import prd x = st.slider('Select a value') st.write(x, 'squared is', x * 86) st.write(x, 'squared is', x * 86) # import streamlit as st # import cv2 # import numpy as np # from tensorflow.keras.preprocessing import image # import tensorflow as tf # from huggingface_hub import from_pretrained_keras # model = from_pretrained_keras("okeowo1014/catsanddogs") # # Load the saved model (replace with your model filename) # # model = tf.keras.models.load_model('cat_dog_classifier.keras') # # Image dimensions for the model # img_width, img_height = 224, 224 # def preprocess_image(img): # """Preprocesses an image for prediction.""" # img = cv2.resize(img, (img_width, img_height)) # img = img.astype('float32') / 255.0 # img = np.expand_dims(img, axis=0) # return img # def predict_class(image): # """Predicts image class and probabilities.""" # preprocessed_img = preprocess_image(image) # prediction = model.predict(preprocessed_img) # class_names = ['cat', 'dog'] # Adjust class names according to your model # return class_names[np.argmax(prediction)], np.max(prediction) # def display_results(class_name, probability): # """Displays prediction results in a progress bar style.""" # st.write(f"**Predicted Class:** {class_name}") # # Create a progress bar using st.progress # progress = st.progress(0) # for i in range(100): # progress.progress(i + 1) # if i == int(probability * 100): # break # st.write(f"**Probability:** {probability:.2f}") # def main(): # """Main app function.""" # st.title("Image Classifier") # st.write("Upload an image to classify it as cat or dog.") # uploaded_file = st.file_uploader("Choose an image...", type="jpg") # if uploaded_file is not None: # image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) # st.image(image, caption="Uploaded Image", use_column_width=True) # predicted_class, probability = predict_class(image) # display_results(predicted_class, probability) # main()