import os import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import VGG16 from tensorflow.keras.layers import Flatten, Dense # from huggingface_hub import push_to_hub_keras from huggingface_hub import hf_hub_url, push_to_hub_keras # from huggingface_hub import upload_file from huggingface_hub import HfApi api = HfApi() # Environment variable for Hugging Face token sac = os.getenv('accesstoken') # Define data paths (modify as needed) train_data_dir = 'tt' validation_data_dir = 'valid' test_data_dir = 'valid' # Set image dimensions (adjust if necessary) img_width, img_height = 224, 224 # VGG16 expects these dimensions # Data augmentation for improved generalization (optional) train_datagen = ImageDataGenerator( rescale=1./255, # Normalize pixel values shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest' ) validation_datagen = ImageDataGenerator(rescale=1./255) # Only rescale for validation # Load training and validation data train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=32, # Adjust batch size based on GPU memory class_mode='binary' # Two classes: cat or dog ) validation_generator = validation_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=32, class_mode='binary' ) # Load pre-trained VGG16 model (without the top layers) base_model = VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) # Freeze the base model layers (optional - experiment with unfreezing for fine-tuning) base_model.trainable = False # Add custom layers for classification on top of the pre-trained model x = base_model.output x = Flatten()(x) predictions = Dense(1, activation='sigmoid')(x) # Sigmoid for binary classification # Create the final model model = tf.keras.Model(inputs=base_model.input, outputs=predictions) # Compile the model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model history = model.fit( train_generator, epochs=1, # Adjust number of epochs based on dataset size and validation performance validation_data=validation_generator ) # Evaluate the model on test data (optional) test_generator = validation_datagen.flow_from_directory( test_data_dir, target_size=(img_width, img_height), batch_size=32, class_mode='binary' ) test_loss, test_acc = model.evaluate(test_generator) print('Test accuracy:', test_acc) # Save the model for future use (optional) # Not recommended for Hugging Face Hub upload (use tf.saved_model.save()) # Export the model for Hugging Face Hub using tf.saved_model.save() export_dir = 'saved_model' # Create a directory for the SavedModel tf.saved_model.save(model, export_dir) # Save model weights to local directory # model.save_pretrained("kerascatanddog") # Upload the model to your Hugging Face space repository push_to_hub_keras( model, # model, # Point to the SavedModel directory repo_id="okeowo1014/kerascatanddog", commit_message="cats and dog image classifier with transfer learning", tags=["image-classifier", "data-augmentation", "class-weights"], include_optimizer=True, token=sac ) # # Upload the SavedModel directory to Hugging Face Hub # api.upload_folder(folder_path=export_dir, repo_id="okeowo1014/catsanddogs", token=sac)