Spaces:
Sleeping
Sleeping
import numpy as np | |
import streamlit as st | |
import torch.nn.functional as F | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import cv2 | |
num_classes = 10 | |
# Class definition for the model (replace with your actual model definition) | |
class FingerprintRecognitionModel(nn.Module): | |
def __init__(self, num_classes): | |
super(FingerprintRecognitionModel, self).__init__() | |
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) # Grayscale input | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) | |
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) | |
self.fc1 = nn.Linear(128 * 28 * 28, 256) # Adjust output size based on input | |
self.fc2 = nn.Linear(256, num_classes) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
x = x.view(-1, 128 * 28 * 28) # Flatten | |
x = F.relu(self.fc1(x)) | |
x = F.softmax(self.fc2(x), dim=1) | |
return x | |
# Load the model (replace with your path) | |
model_path = 'fingerprint_recognition_model.pt' | |
model = FingerprintRecognitionModel(num_classes) | |
model.load_state_dict(torch.load(model_path)) | |
model.eval() | |
# Function to preprocess the image (assuming grayscale) | |
# def preprocess_image(image): | |
# img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale | |
# img_resized = cv2.resize(img, (224, 224)) | |
# transform = transforms.Compose([ | |
# transforms.ToTensor(), | |
# transforms.Normalize((0.5,), (0.5,)) | |
# ]) | |
# img_tensor = transform(img_resized).unsqueeze(0) # Add a batch dimension | |
# return img_tensor | |
def preprocess_image(image): | |
"""Preprocesses an image for classification with a PyTorch model. | |
Args: | |
image: The image to preprocess. This can be a NumPy array representing | |
a color or grayscale image. | |
Returns: | |
A PyTorch tensor representing the preprocessed image with a batch dimension. | |
""" | |
# Ensure image is a NumPy array | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) # Convert if necessary | |
# Convert to grayscale if color image | |
if len(image.shape) == 3 and image.shape[2] == 3: # Check for color image (3 channels) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
dsize = (224, 224) # Explicitly define output size | |
img_resized = cv2.resize(image, dsize) | |
# Create a PyTorch transform (assuming model expects normalized input) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), # Convert to PyTorch tensor | |
transforms.Normalize((0.5,), (0.5,)) # Normalize using mean and standard deviation | |
]) | |
# Apply transforms and add batch dimension | |
img_tensor = transform(img_resized).unsqueeze(0) | |
return img_tensor | |
# Predict class for a new image | |
def predict_class(image): | |
img_tensor = preprocess_image(image) | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
_, predicted = torch.max(outputs.data, 1) | |
predicted_class = int(predicted.item()) | |
return predicted_class | |
def main(): | |
""" Streamlit App for Fingerprint Classification""" | |
st.title("Fingerprint Recognition - Class Prediction") | |
uploaded_file = st.file_uploader("Choose a Fingerprint Image", type=['png', 'jpg', 'jpeg','bmp']) | |
if uploaded_file is not None: | |
# Convert uploaded image to cv2 format | |
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) | |
st.image(image, caption='Uploaded Fingerprint', use_column_width=True) | |
# Preprocess and predict class | |
processed_img = preprocess_image(image) | |
predicted_class = predict_class(processed_img) | |
# Display | |
st.write(f"Predicted Class: {predicted_class}") | |
class_labels = {0: "Left_index_finger", 1: "Left_little_finger", 2: "Left_middle_finger", 3: "Left_ring_finger", | |
4: "Left_thumb_finger", 5: "Right_index_finger", 6: "Right_little_finger", 7: "Right_middle_finger", | |
8: "Right_ring_finger", 9: "Right_thumb_finger"} | |
st.write(f"Class Label: {class_labels[predicted_class]}") | |
main() | |