import tensorflow as tf from tensorflow.keras.preprocessing import image import numpy as np from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("okeowo1014/catsanddogs") # Load the saved model loaded_model = tf.keras.models.load_model('fingerprint_recognition_model.keras') # Define the image path for the new image you want to predict image_path = 'path_to_your_new_image.jpg' # Load and preprocess the image img = image.load_img(image_path, target_size=(224, 224), color_mode='grayscale') img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array /= 255. # Normalize the image data # Make predictions predictions = loaded_model.predict(img_array) # Get the predicted class label predicted_class = np.argmax(predictions[0]) # Print the predicted class label print(f'Predicted class label: {predicted_class}')