import numpy as np import streamlit as st import torch.nn.functional as F import torch import torch.nn as nn import torchvision.transforms as transforms from PIL import Image import cv2 num_classes = 10 # Class definition for the model (replace with your actual model definition) class FingerprintRecognitionModel(nn.Module): def __init__(self, num_classes): super(FingerprintRecognitionModel, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) # Grayscale input self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.fc1 = nn.Linear(128 * 28 * 28, 256) # Adjust output size based on input self.fc2 = nn.Linear(256, num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, 128 * 28 * 28) # Flatten x = F.relu(self.fc1(x)) x = F.softmax(self.fc2(x), dim=1) return x # Load the model (replace with your path) model_path = 'fingerprint_recognition_model.pt' model = FingerprintRecognitionModel(num_classes) model.load_state_dict(torch.load(model_path)) model.eval() # Function to preprocess the image (assuming grayscale) # def preprocess_image(image): # img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert to grayscale # img_resized = cv2.resize(img, (224, 224)) # transform = transforms.Compose([ # transforms.ToTensor(), # transforms.Normalize((0.5,), (0.5,)) # ]) # img_tensor = transform(img_resized).unsqueeze(0) # Add a batch dimension # return img_tensor def preprocess_image(image): """Preprocesses an image for classification with a PyTorch model. Args: image: The image to preprocess. This can be a NumPy array representing a color or grayscale image. Returns: A PyTorch tensor representing the preprocessed image with a batch dimension. """ # Ensure image is a NumPy array if not isinstance(image, np.ndarray): image = np.array(image) # Convert if necessary # Convert to grayscale if color image if len(image.shape) == 3 and image.shape[2] == 3: # Check for color image (3 channels) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) dsize = (224, 224) # Explicitly define output size img_resized = cv2.resize(image, dsize) # Create a PyTorch transform (assuming model expects normalized input) transform = transforms.Compose([ transforms.ToTensor(), # Convert to PyTorch tensor transforms.Normalize((0.5,), (0.5,)) # Normalize using mean and standard deviation ]) # Apply transforms and add batch dimension img_tensor = transform(img_resized).unsqueeze(0) return img_tensor # Predict class for a new image def predict_class(image): img_tensor = preprocess_image(image) with torch.no_grad(): outputs = model(img_tensor) _, predicted = torch.max(outputs.data, 1) predicted_class = int(predicted.item()) return predicted_class def main(): """ Streamlit App for Fingerprint Classification""" st.title("Fingerprint Recognition - Class Prediction") uploaded_file = st.file_uploader("Choose a Fingerprint Image", type=['png', 'jpg', 'jpeg','bmp']) if uploaded_file is not None: # Convert uploaded image to cv2 format image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) st.image(image, caption='Uploaded Fingerprint', use_column_width=True) # Preprocess and predict class processed_img = preprocess_image(image) predicted_class = predict_class(processed_img) # Display st.write(f"Predicted Class: {predicted_class}") class_labels = {0: "Left_index_finger", 1: "Left_little_finger", 2: "Left_middle_finger", 3: "Left_ring_finger", 4: "Left_thumb_finger", 5: "Right_index_finger", 6: "Right_little_finger", 7: "Right_middle_finger", 8: "Right_ring_finger", 9: "Right_thumb_finger"} st.write(f"Class Label: {class_labels[predicted_class]}") main()