Spaces:
Sleeping
Sleeping
import io | |
from flask import Flask, render_template, request, jsonify | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import torch.nn.functional as F | |
import torch.nn as nn | |
num_classes = 10 | |
# Class definition for the model (same as in your code) | |
class FingerprintRecognitionModel(nn.Module): | |
def __init__(self, num_classes): | |
super(FingerprintRecognitionModel, self).__init__() | |
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) | |
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) | |
self.fc1 = nn.Linear(128 * 28 * 28, 256) | |
self.fc2 = nn.Linear(256, num_classes) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
x = x.view(-1, 128 * 28 * 28) | |
x = F.relu(self.fc1(x)) | |
x = F.softmax(self.fc2(x), dim=1) | |
return x | |
app = Flask(__name__) | |
# Load the model | |
model_path = 'fingerprint_recognition_model_bs32_lr0.001_opt_Adam.pt' | |
model = FingerprintRecognitionModel(num_classes) | |
model.load_state_dict(torch.load(model_path)) | |
model.eval() | |
def preprocess_image(image_bytes): | |
# Convert bytes to PIL Image | |
image = Image.open(io.BytesIO(image_bytes)).convert('L') # Convert to grayscale | |
# Resize to 224x224 | |
img_resized = image.resize((224, 224)) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
# Apply transforms and add batch dimension | |
img_tensor = transform(img_resized).unsqueeze(0) | |
return img_tensor | |
def predict_class(image_bytes): | |
img_tensor = preprocess_image(image_bytes) | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
_, predicted = torch.max(outputs.data, 1) | |
predicted_class = int(predicted.item()) | |
return predicted_class | |
def index(): | |
if request.method == 'POST': | |
file = request.files['file'] | |
if file: | |
contents = file.read() | |
predicted_class = predict_class(contents) | |
class_labels = {0:'left_index_fingers',1:'left_little_fingers',2:'left_middle_fingers',3: 'left_ring_fingers', 4:'left_thumb_fingers',5:'right_index_fingers',6:'right_little_fingers',7:'right_middle_fingers',8:'right_ring_fingers',9: 'right_thumb_fingers'} | |
return jsonify({'predicted_class': predicted_class, 'class_label': class_labels[predicted_class]}) | |
return render_template('index.html') | |
if __name__ == '__main__': | |
app.run(debug=True) | |