Spaces:
Sleeping
Sleeping
import io | |
from fastapi import FastAPI, File, UploadFile | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import torch.nn.functional as F | |
import torch.nn as nn | |
num_classes = 10 | |
# Class definition for the model (same as in your code) | |
class FingerprintRecognitionModel(nn.Module): | |
def __init__(self, num_classes): | |
super(FingerprintRecognitionModel, self).__init__() | |
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) | |
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) | |
self.fc1 = nn.Linear(128 * 28 * 28, 256) | |
self.fc2 = nn.Linear(256, num_classes) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
x = x.view(-1, 128 * 28 * 28) | |
x = F.relu(self.fc1(x)) | |
x = F.softmax(self.fc2(x), dim=1) | |
return x | |
app = FastAPI() | |
# Load the model | |
model_path = 'fingerprint_recognition_model.pt' | |
model = FingerprintRecognitionModel(num_classes) | |
model.load_state_dict(torch.load(model_path)) | |
model.eval() | |
def preprocess_image(image_bytes): | |
# Convert bytes to PIL Image | |
image = Image.open(io.BytesIO(image_bytes)).convert('L') # Convert to grayscale | |
# Resize to 224x224 | |
img_resized = image.resize((224, 224)) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
# Apply transforms and add batch dimension | |
img_tensor = transform(img_resized).unsqueeze(0) | |
return img_tensor | |
def predict_class(image_bytes): | |
img_tensor = preprocess_image(image_bytes) | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
_, predicted = torch.max(outputs.data, 1) | |
predicted_class = int(predicted.item()) | |
return predicted_class | |
async def predict_endpoint(file: UploadFile = File(...)): | |
contents = await file.read() | |
predicted_class = predict_class(contents) | |
class_labels = {0: 'Left_ring_fingers', 1: 'Left_thumb_fingers', 2: 'Right_index_fingers', 3: 'Right_little_fingers', 4: 'Right_middle_fingers', 5: 'Right_ring_fingers', 6: 'Right_thumb_fingers', 7: 'left_index_fingers', 8: 'left_little_fingers', 9: 'left_middle_fingers'} | |
return {"predicted_class": predicted_class, "class_label": class_labels[predicted_class]} | |