|
|
|
from dataclasses import dataclass |
|
import streamlit as st |
|
from langchain.callbacks import get_openai_callback |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import RetrievalQA, ConversationChain |
|
from langchain.prompts.prompt import PromptTemplate |
|
from prompts.prompts import templates |
|
from typing import Literal |
|
from langchain.vectorstores import FAISS |
|
from langchain.text_splitter import NLTKTextSplitter |
|
from PyPDF2 import PdfReader |
|
from prompts.prompt_selector import prompt_sector |
|
from streamlit_lottie import st_lottie |
|
import json |
|
from IPython.display import Audio |
|
import nltk |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import getpass |
|
import os |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings |
|
|
|
@dataclass |
|
class Message: |
|
"""Class for keeping track of interview history.""" |
|
origin: Literal["human", "ai"] |
|
message: str |
|
|
|
def save_vector(resume): |
|
"""embeddings""" |
|
nltk.download('punkt') |
|
pdf_reader = PdfReader(resume) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
|
|
text_splitter = NLTKTextSplitter() |
|
texts = text_splitter.split_text(text) |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") |
|
docsearch = FAISS.from_texts(texts, embeddings) |
|
return docsearch |
|
|
|
def initialize_session_state_resume(position, resume): |
|
|
|
if 'docsearch' not in st.session_state: |
|
st.session_state.docserch = save_vector(resume) |
|
|
|
if 'retriever' not in st.session_state: |
|
st.session_state.retriever = st.session_state.docserch.as_retriever(search_type="similarity") |
|
|
|
if 'chain_type_kwargs' not in st.session_state: |
|
st.session_state.chain_type_kwargs = prompt_sector(position, templates) |
|
|
|
if "resume_history" not in st.session_state: |
|
st.session_state.resume_history = [] |
|
st.session_state.resume_history.append(Message(origin="ai", message="Hello, I am your interivewer today. I will ask you some questions regarding your resume and your experience. Please start by saying hello or introducing yourself. Note: The maximum length of your answer is 4097 tokens!")) |
|
|
|
if "token_count" not in st.session_state: |
|
st.session_state.token_count = 0 |
|
|
|
if "resume_memory" not in st.session_state: |
|
st.session_state.resume_memory = ConversationBufferMemory(human_prefix = "Candidate: ", ai_prefix = "Interviewer") |
|
|
|
if "resume_guideline" not in st.session_state: |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-pro") |
|
|
|
st.session_state.resume_guideline = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
chain_type_kwargs=st.session_state.chain_type_kwargs, chain_type='stuff', |
|
retriever=st.session_state.retriever, memory = st.session_state.resume_memory).run("Create an interview guideline and prepare only two questions for each topic. Make sure the questions tests the knowledge") |
|
|
|
if "resume_screen" not in st.session_state: |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-pro") |
|
|
|
PROMPT = PromptTemplate( |
|
input_variables=["history", "input"], |
|
template= """I want you to act as an interviewer strictly following the guideline in the current conversation. |
|
|
|
Ask me questions and wait for my answers like a human. Do not write explanations. |
|
Candidate has no assess to the guideline. |
|
Only ask one question at a time. |
|
Do ask follow-up questions if you think it's necessary. |
|
Do not ask the same question. |
|
Do not repeat the question. |
|
Candidate has no assess to the guideline. |
|
You name is GPTInterviewer. |
|
I want you to only reply as an interviewer. |
|
Do not write all the conversation at once. |
|
Candiate has no assess to the guideline. |
|
|
|
Current Conversation: |
|
{history} |
|
|
|
Candidate: {input} |
|
AI: """) |
|
st.session_state.resume_screen = ConversationChain(prompt=PROMPT, llm = llm, memory = st.session_state.resume_memory) |
|
|
|
if "resume_feedback" not in st.session_state: |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-pro") |
|
st.session_state.resume_feedback = ConversationChain( |
|
prompt=PromptTemplate(input_variables=["history","input"], template=templates.feedback_template), |
|
llm=llm, |
|
memory=st.session_state.resume_memory, |
|
) |
|
|
|
def answer_call_back(): |
|
|
|
'''callback function for answering user input''' |
|
|
|
|
|
human_answer = st.session_state.answer |
|
st.session_state.history.append( |
|
Message("human", human_answer) |
|
) |
|
|
|
llm_answer = st.session_state.resume_screen.run(human_answer) |
|
st.session_state.history.append( |
|
Message("ai", llm_answer) |
|
) |
|
st.session_state.token_count += len(llm_answer.split()) |
|
return llm_answer |
|
|
|
|
|
if "GOOGLE_API_KEY" not in os.environ: |
|
os.environ["GOOGLE_API_KEY"] = "AIzaSyCA4__JMC_ZIQ9xQegIj5LOMLhSSrn3pMw" |
|
|
|
def app(): |
|
|
|
st.title("Resume Screen") |
|
|
|
st.session_state.history = [] |
|
with open('job_description.json', 'r') as f: |
|
jd = json.load(f) |
|
|
|
|
|
position = jd |
|
resume = st.file_uploader("Upload your resume", type=["pdf"]) |
|
|
|
|
|
|
|
|
|
|
|
if position and resume: |
|
|
|
initialize_session_state_resume(position, resume) |
|
credit_card_placeholder = st.empty() |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
feedback = st.button("Get Interview Feedback") |
|
with col2: |
|
guideline = st.button("Show me interview guideline!") |
|
chat_placeholder = st.container() |
|
answer_placeholder = st.container() |
|
audio = None |
|
|
|
if guideline: |
|
st.markdown(st.session_state.resume_guideline) |
|
if feedback: |
|
evaluation = st.session_state.resume_feedback.run("please give evalution regarding the interview") |
|
st.markdown(evaluation) |
|
st.download_button(label="Download Interview Feedback", data=evaluation, file_name="interview_feedback.txt") |
|
st.stop() |
|
else: |
|
with answer_placeholder: |
|
voice: bool = st.checkbox("I would like to speak with AI Interviewer!") |
|
if voice: |
|
print("voice") |
|
else: |
|
answer = st.chat_input("Your answer") |
|
if answer: |
|
st.session_state['answer'] = answer |
|
audio = answer_call_back() |
|
|
|
with chat_placeholder: |
|
for answer in st.session_state.resume_history: |
|
if answer.origin == 'ai': |
|
if audio: |
|
with st.chat_message("assistant"): |
|
st.write(answer.message) |
|
st.write(audio) |
|
else: |
|
with st.chat_message("assistant"): |
|
st.write(answer.message) |
|
else: |
|
with st.chat_message("user"): |
|
st.write(answer.message) |
|
|
|
credit_card_placeholder.caption(f""" |
|
Progress: {int(len(st.session_state.resume_history) / 50 * 100)}% completed.""") |
|
|
|
|