import streamlit as st from streamlit_lottie import st_lottie from typing import Literal from dataclasses import dataclass import json import base64 from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationChain, RetrievalQA from langchain.prompts.prompt import PromptTemplate from langchain.text_splitter import NLTKTextSplitter from langchain.vectorstores import FAISS import nltk from prompts.prompts import templates from langchain_google_genai import ChatGoogleGenerativeAI import getpass import os from langchain_google_genai import GoogleGenerativeAIEmbeddings if "GOOGLE_API_KEY" not in os.environ: os.environ["GOOGLE_API_KEY"] = "AIzaSyD-61G3GhSY97O-X2AlpXGv1MYBBMRFmwg" @dataclass class Message: """class for keeping track of interview history.""" origin: Literal["human", "ai"] message: str def save_vector(text): """embeddings""" nltk.download('punkt') text_splitter = NLTKTextSplitter() texts = text_splitter.split_text(text) # Create emebeddings embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") docsearch = FAISS.from_texts(texts, embeddings) return docsearch def initialize_session_state_jd(jd): """ initialize session states """ if "user_responses" not in st.session_state: st.session_state.user_responses = [] if 'jd_docsearch' not in st.session_state: st.session_state.jd_docserch = save_vector(jd) if 'jd_retriever' not in st.session_state: st.session_state.jd_retriever = st.session_state.jd_docserch.as_retriever(search_type="similarity") if 'jd_chain_type_kwargs' not in st.session_state: Interview_Prompt = PromptTemplate(input_variables=["context", "question"], template=templates.jd_template) st.session_state.jd_chain_type_kwargs = {"prompt": Interview_Prompt} if 'jd_memory' not in st.session_state: st.session_state.jd_memory = ConversationBufferMemory() # interview history if "jd_history" not in st.session_state: st.session_state.jd_history = [] st.session_state.jd_history.append(Message("ai", "Hello, Welcome to the interview. I am your interviewer today. I will ask you Technical questions regarding the job description you submitted." "Please start by introducting a little bit about yourself. Note: The maximum length of your answer is 4097 tokens!")) # token count if "token_count" not in st.session_state: st.session_state.token_count = 0 if "jd_guideline" not in st.session_state: llm = ChatGoogleGenerativeAI( model="gemini-pro") st.session_state.jd_guideline = RetrievalQA.from_chain_type( llm=llm, chain_type_kwargs=st.session_state.jd_chain_type_kwargs, chain_type='stuff', retriever=st.session_state.jd_retriever, memory=st.session_state.jd_memory).run(f"Create a list of DSA interview questions that comprehensively test the technical knowledge of candidates.") if "jd_screen" not in st.session_state: llm = ChatGoogleGenerativeAI( model="gemini-pro") PROMPT = PromptTemplate( input_variables=["history", "input"], template="""I want you to act as a technical interviewer, strictly following the guideline in the current conversation. Candidate has no idea what the guideline is. Ask me technical questions related to {job_role}, including Data Structures and Algorithms (DSA), conceptual questions related to {job_role}, and role-specific questions. Wait for my answers after each question. Do not write explanations. Ask questions like a real technical interviewer, focusing on one concept at a time. Do not ask the same question repeatedly. Do not repeat the question verbatim. Ask follow-up questions if necessary to clarify or probe deeper into the candidate's understanding. You are the Technical Interviewer. Respond only as a technical interviewer. Do not write the entire conversation at once. If there is an error in my response, point it out. Current Conversation: {history} Candidate: {input} Technical Interviewer: """) st.session_state.jd_screen = ConversationChain(prompt=PROMPT, llm=llm, memory=st.session_state.jd_memory) if 'jd_feedback' not in st.session_state: llm = ChatGoogleGenerativeAI( model="gemini-pro") st.session_state.jd_feedback = ConversationChain( prompt=PromptTemplate(input_variables=["history", "input"], template=templates.feedback_template), llm=llm, memory=st.session_state.jd_memory, ) def answer_call_back(): formatted_history = [] for message in st.session_state.jd_history: if message.origin == "human": formatted_message = {"speaker": "user", "text": message.message} else: formatted_message = {"speaker": "assistant", "text": message.message} formatted_history.append(formatted_message) user_answer = st.session_state.get('answer', '') answer = st.session_state.jd_screen.run(input=user_answer, history=formatted_history) if user_answer: st.session_state.jd_history.append(Message("human", user_answer)) if st.session_state.jd_history and len(st.session_state.jd_history) > 1: last_question = st.session_state.jd_history[-2].message # Assuming the last message before the user's answer is the question st.session_state.user_responses.append({"question": last_question, "answer": user_answer}) if answer: st.session_state.jd_history.append(Message("ai", answer)) return answer def app(): st.title("Technical Screen") with open('job_description.json', 'r') as f: jd = json.load(f) if jd: # initialize session states initialize_session_state_jd(jd) #st.write(st.session_state.jd_guideline) credit_card_placeholder = st.empty() col1, col2, col3 = st.columns(3) with col1: feedback = st.button("Get Interview Feedback") with col2: guideline = st.button("Show me interview guideline!") with col3: myresponse = st.button("Show my responses") chat_placeholder = st.container() answer_placeholder = st.container() audio = None # if submit email adress, get interview feedback imediately if guideline: st.write(st.session_state.jd_guideline) if feedback: evaluation = st.session_state.jd_feedback.run("please give evalution regarding the interview") st.markdown(evaluation) st.download_button(label="Download Interview Feedback", data=evaluation, file_name="interview_feedback.txt") st.stop() if myresponse: with st.container(): st.write("### My Interview Responses") for idx, message in enumerate(st.session_state.jd_history): # Corrected from history to jd_history if message.origin == "ai": st.write(f"**Question {idx//2 + 1}:** {message.message}") else: st.write(f"**My Answer:** {message.message}\n") else: with answer_placeholder: voice = 0 if voice: print(voice) else: answer = st.chat_input("Your answer") if answer: st.session_state['answer'] = answer audio = answer_call_back() with chat_placeholder: for answer in st.session_state.jd_history: if answer.origin == 'ai': if audio: with st.chat_message("assistant"): st.write(answer.message) else: with st.chat_message("assistant"): st.write(answer.message) else: with st.chat_message("user"): st.write(answer.message) credit_card_placeholder.caption(f""" Progress: {int(len(st.session_state.jd_history) / 50 * 100)}% completed.""") else: st.info("Please submit a job description to start the interview.")