File size: 1,644 Bytes
fd7b88e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e4fc6
fd7b88e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import requests
import streamlit as st
import random
import time

st.title("Rasa Chatbot Interface")

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if user_input := st.chat_input("What is up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": user_input})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(user_input)

    # Send user input to Rasa webhook
    payload = {"sender": "user", "message": user_input}
    response = requests.post('https://omdenalc-omdena-ng-lagos-chatbot-model.hf.space/webhooks/rest/webhook', json=payload)
    bot_reply = response.json()

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        full_response = ""
        assistant_response = random.choice(bot_reply)["text"]
        # Simulate stream of response with milliseconds delay
        for chunk in assistant_response.split():
            full_response += chunk + " "
            time.sleep(0.05)
            # Add a blinking cursor to simulate typing
            message_placeholder.markdown(full_response + "▌")
        message_placeholder.markdown(full_response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": full_response})