File size: 16,861 Bytes
a347f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile

from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
from apscheduler.schedulers.background import BackgroundScheduler


# used for restarting the space
HF_TOKEN = os.environ.get("HF_TOKEN")
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"

# escape HTML for logging
def escape(s: str) -> str:
    s = s.replace("&", "&") # Must be done first!
    s = s.replace("<", "&lt;")
    s = s.replace(">", "&gt;")
    s = s.replace('"', "&quot;")
    s = s.replace("\n", "<br/>")
    return s

def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
    imatrix_command = [
        "./llama.cpp/llama-imatrix",
        "-m", model_path,
        "-f", train_data_path,
        "-ngl", "99",
        "--output-frequency", "10",
        "-o", output_path,
    ]

    if not os.path.isfile(model_path):
        raise Exception(f"Model file not found: {model_path}")

    print("Running imatrix command...")
    process = subprocess.Popen(imatrix_command, shell=False)

    try:
        process.wait(timeout=60)  # added wait
    except subprocess.TimeoutExpired:
        print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
        process.send_signal(signal.SIGINT)
        try:
            process.wait(timeout=5)  # grace period
        except subprocess.TimeoutExpired:
            print("Imatrix proc still didn't term. Forecfully terming process...")
            process.kill()

    print("Importance matrix generation completed.")

def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
    print(f"Model path: {model_path}")
    print(f"Output dir: {outdir}")

    if oauth_token.token is None:
        raise ValueError("You have to be logged in.")
    
    split_cmd = [
        "./llama.cpp/llama-gguf-split",
        "--split",
    ]
    if split_max_size:
        split_cmd.append("--split-max-size")
        split_cmd.append(split_max_size)
    else:
        split_cmd.append("--split-max-tensors")
        split_cmd.append(str(split_max_tensors))

    # args for output
    model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
    split_cmd.append(model_path)
    split_cmd.append(model_path_prefix)

    print(f"Split command: {split_cmd}") 
    
    result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
    print(f"Split command stdout: {result.stdout}") 
    print(f"Split command stderr: {result.stderr}") 
    
    if result.returncode != 0:
        stderr_str = result.stderr.decode("utf-8")
        raise Exception(f"Error splitting the model: {stderr_str}")
    print("Model split successfully!")

    # remove the original model file if needed
    if os.path.exists(model_path):
        os.remove(model_path)

    model_file_prefix = model_path_prefix.split('/')[-1]
    print(f"Model file name prefix: {model_file_prefix}") 
    sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
    if sharded_model_files:
        print(f"Sharded model files: {sharded_model_files}")
        api = HfApi(token=oauth_token.token)
        for file in sharded_model_files:
            file_path = os.path.join(outdir, file)
            print(f"Uploading file: {file_path}")
            try:
                api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=file,
                    repo_id=repo_id,
                )
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")
    
    print("Sharded model has been uploaded successfully!")

def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
    if oauth_token is None or oauth_token.token is None:
        raise ValueError("You must be logged in to use GGUF-my-repo")
    model_name = model_id.split('/')[-1]

    try:
        api = HfApi(token=oauth_token.token)

        dl_pattern = ["*.md", "*.json", "*.model"]

        pattern = (
            "*.safetensors"
            if any(
                file.path.endswith(".safetensors")
                for file in api.list_repo_tree(
                    repo_id=model_id,
                    recursive=True,
                )
            )
            else "*.bin"
        )

        dl_pattern += [pattern]

        if not os.path.exists("downloads"):
            os.makedirs("downloads")

        if not os.path.exists("outputs"):
            os.makedirs("outputs")

        with tempfile.TemporaryDirectory(dir="outputs") as outdir:
            fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")

            with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
                # Keep the model name as the dirname so the model name metadata is populated correctly
                local_dir = Path(tmpdir)/model_name
                print(local_dir)
                api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
                print("Model downloaded successfully!")
                print(f"Current working directory: {os.getcwd()}")
                print(f"Model directory contents: {os.listdir(local_dir)}")

                config_dir = local_dir/"config.json"
                adapter_config_dir = local_dir/"adapter_config.json"
                if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
                    raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')

                result = subprocess.run([
                    "python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
                ], shell=False, capture_output=True)
                print(result)
                if result.returncode != 0:
                    stderr_str = result.stderr.decode("utf-8")
                    raise Exception(f"Error converting to fp16: {stderr_str}")
                print("Model converted to fp16 successfully!")
                print(f"Converted model path: {fp16}")

            imatrix_path = Path(outdir)/"imatrix.dat"

            if use_imatrix:
                if train_data_file:
                    train_data_path = train_data_file.name
                else:
                    train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset

                print(f"Training data file path: {train_data_path}")

                if not os.path.isfile(train_data_path):
                    raise Exception(f"Training data file not found: {train_data_path}")

                generate_importance_matrix(fp16, train_data_path, imatrix_path)
            else:
                print("Not using imatrix quantization.")
            
            # Quantize the model
            quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
            quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
            if use_imatrix:
                quantise_ggml = [
                    "./llama.cpp/llama-quantize",
                    "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
                ]
            else:
                quantise_ggml = [
                    "./llama.cpp/llama-quantize",
                    fp16, quantized_gguf_path, q_method
                ]
            result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
            if result.returncode != 0:
                stderr_str = result.stderr.decode("utf-8")
                raise Exception(f"Error quantizing: {stderr_str}")
            print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
            print(f"Quantized model path: {quantized_gguf_path}")

            # Create empty repo
            username = whoami(oauth_token.token)["name"]
            new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-GGUF", exist_ok=True, private=private_repo)
            new_repo_id = new_repo_url.repo_id
            print("Repo created successfully!", new_repo_url)

            try:
                card = ModelCard.load(model_id, token=oauth_token.token)
            except:
                card = ModelCard("")
            if card.data.tags is None:
                card.data.tags = []
            card.data.tags.append("llama-cpp")
            card.data.tags.append("gguf-my-repo")
            card.data.base_model = model_id
            card.text = dedent(
                f"""
                # {new_repo_id}
                This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
                Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
                
                ## Use with llama.cpp
                Install llama.cpp through brew (works on Mac and Linux)
                
                ```bash
                brew install llama.cpp
                
                ```
                Invoke the llama.cpp server or the CLI.
                
                ### CLI:
                ```bash
                llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
                ```
                
                ### Server:
                ```bash
                llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
                ```
                
                Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

                Step 1: Clone llama.cpp from GitHub.
                ```
                git clone https://github.com/ggerganov/llama.cpp
                ```

                Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
                ```
                cd llama.cpp && LLAMA_CURL=1 make
                ```

                Step 3: Run inference through the main binary.
                ```
                ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
                ```
                or 
                ```
                ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
                ```
                """
            )
            readme_path = Path(outdir)/"README.md"
            card.save(readme_path)

            if split_model:
                split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
            else:
                try:
                    print(f"Uploading quantized model: {quantized_gguf_path}")
                    api.upload_file(
                        path_or_fileobj=quantized_gguf_path,
                        path_in_repo=quantized_gguf_name,
                        repo_id=new_repo_id,
                    )
                except Exception as e:
                    raise Exception(f"Error uploading quantized model: {e}")
            
            if os.path.isfile(imatrix_path):
                try:
                    print(f"Uploading imatrix.dat: {imatrix_path}")
                    api.upload_file(
                        path_or_fileobj=imatrix_path,
                        path_in_repo="imatrix.dat",
                        repo_id=new_repo_id,
                    )
                except Exception as e:
                    raise Exception(f"Error uploading imatrix.dat: {e}")

            api.upload_file(
                path_or_fileobj=readme_path,
                path_in_repo="README.md",
                repo_id=new_repo_id,
            )
            print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")

        # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here

        return (
            f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
            "llama.png",
        )
    except Exception as e:
        return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")


css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo: 
    gr.Markdown("You must be logged in to use GGUF-my-repo.")
    gr.LoginButton(min_width=250)

    model_id = HuggingfaceHubSearch(
        label="Hub Model ID",
        placeholder="Search for model id on Huggingface",
        search_type="model",
    )

    q_method = gr.Dropdown(
        ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
        label="Quantization Method",
        info="GGML quantization type",
        value="Q4_K_M",
        filterable=False,
        visible=True
    )

    imatrix_q_method = gr.Dropdown(
        ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
        label="Imatrix Quantization Method",
        info="GGML imatrix quants type",
        value="IQ4_NL", 
        filterable=False,
        visible=False
    )

    use_imatrix = gr.Checkbox(
        value=False,
        label="Use Imatrix Quantization",
        info="Use importance matrix for quantization."
    )

    private_repo = gr.Checkbox(
        value=False,
        label="Private Repo",
        info="Create a private repo under your username."
    )

    train_data_file = gr.File(
        label="Training Data File",
        file_types=["txt"],
        visible=False
    )

    split_model = gr.Checkbox(
        value=False,
        label="Split Model",
        info="Shard the model using gguf-split."
    )

    split_max_tensors = gr.Number(
        value=256,
        label="Max Tensors per File",
        info="Maximum number of tensors per file when splitting model.",
        visible=False
    )

    split_max_size = gr.Textbox(
        label="Max File Size",
        info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
        visible=False
    )

    def update_visibility(use_imatrix):
        return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
    
    use_imatrix.change(
        fn=update_visibility,
        inputs=use_imatrix,
        outputs=[q_method, imatrix_q_method, train_data_file]
    )

    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
            use_imatrix,
            imatrix_q_method,
            private_repo,
            train_data_file,
            split_model,
            split_max_tensors,
            split_max_size,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own GGUF Quants, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
        api_name=False
    )

    def update_split_visibility(split_model):
        return gr.update(visible=split_model), gr.update(visible=split_model)

    split_model.change(
        fn=update_split_visibility,
        inputs=split_model,
        outputs=[split_max_tensors, split_max_size]
    )

def restart_space():
    HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)