Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from optimum.exporters.tasks import TasksManager | |
from optimum.exporters.onnx import OnnxConfigWithPast, export, validate_model_outputs | |
from tempfile import TemporaryDirectory | |
from transformers import AutoConfig, is_torch_available | |
from transformers import AutoConfig | |
from pathlib import Path | |
import os | |
import shutil | |
import argparse | |
from typing import Optional | |
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions | |
from huggingface_hub.file_download import repo_folder_name | |
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: | |
try: | |
discussions = api.get_repo_discussions(repo_id=model_id) | |
except Exception: | |
return None | |
for discussion in discussions: | |
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: | |
return discussion | |
def convert_onnx(model_id: str, task: str, folder: str): | |
model_class = TasksManager.get_model_class_for_task(task) | |
config = AutoConfig.from_pretrained(model_id) | |
model = model_class.from_config(config) | |
device = "cpu" # ? | |
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices. | |
# See: https://github.com/ultralytics/yolov5/pull/8378 | |
if model.__class__.__name__.startswith("Yolos") and device != "cpu": | |
return | |
onnx_config_class_constructor = TasksManager.get_exporter_config_constructor(model_type=config.model_type, exporter="onnx", task=task, model_name=model_id) | |
onnx_config = onnx_config_class_constructor(model.config) | |
# We need to set this to some value to be able to test the outputs values for batch size > 1. | |
if ( | |
isinstance(onnx_config, OnnxConfigWithPast) | |
and getattr(model.config, "pad_token_id", None) is None | |
and task == "sequence-classification" | |
): | |
model.config.pad_token_id = 0 | |
if is_torch_available(): | |
from optimum.exporters.onnx.utils import TORCH_VERSION | |
if not onnx_config.is_torch_support_available: | |
print( | |
"Skipping due to incompatible PyTorch version. Minimum required is" | |
f" {onnx_config.MIN_TORCH_VERSION}, got: {TORCH_VERSION}" | |
) | |
onnx_inputs, onnx_outputs = export( | |
model, onnx_config, onnx_config.DEFAULT_ONNX_OPSET, Path(folder), device=device | |
) | |
atol = onnx_config.ATOL_FOR_VALIDATION | |
if isinstance(atol, dict): | |
atol = atol[task.replace("-with-past", "")] | |
validate_model_outputs( | |
onnx_config, | |
model, | |
Path(folder), | |
onnx_outputs, | |
atol, | |
) | |
# TODO: iterate in folder and add all | |
operations = [CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames] | |
return operations | |
def convert(api: "HfApi", model_id: str, task:str, force: bool=False) -> Optional["CommitInfo"]: | |
pr_title = "Adding ONNX file of this model" | |
info = api.model_info(model_id) | |
filenames = set(s.rfilename for s in info.siblings) | |
with TemporaryDirectory() as d: | |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
os.makedirs(folder) | |
new_pr = None | |
try: | |
pr = previous_pr(api, model_id, pr_title) | |
if "model.onnx" in filenames and not force: | |
raise Exception(f"Model {model_id} is already converted, skipping..") | |
elif pr is not None and not force: | |
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}" | |
new_pr = pr | |
raise Exception(f"Model {model_id} already has an open PR check out {url}") | |
else: | |
convert_onnx(model_id, task, folder) | |
finally: | |
shutil.rmtree(folder) | |
return new_pr | |
if __name__ == "__main__": | |
DESCRIPTION = """ | |
Simple utility tool to convert automatically a model on the hub to onnx format. | |
It is PyTorch exclusive for now. | |
It works by downloading the weights (PT), converting them locally, and uploading them back | |
as a PR on the hub. | |
""" | |
parser = argparse.ArgumentParser(description=DESCRIPTION) | |
parser.add_argument( | |
"model_id", | |
type=str, | |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", | |
) | |
parser.add_argument( | |
"task", | |
type=str, | |
help="The task the model is performing", | |
) | |
parser.add_argument( | |
"--force", | |
action="store_true", | |
help="Create the PR even if it already exists of if the model was already converted.", | |
) | |
args = parser.parse_args() | |
api = HfApi() | |
convert(api, args.model_id, task=args.task, force=args.force) |