Alanturner2
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import ArxivLoader
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain_community.llms import HuggingFaceHub
|
5 |
+
from langchain.text_splitter import TokenTextSplitter
|
6 |
+
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
import os
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
hugging_api_key = os.getenv('HUGGING_API_KEY')
|
15 |
+
|
16 |
+
from groq import AsyncGroq
|
17 |
+
from groq import Groq
|
18 |
+
|
19 |
+
from langchain_groq import ChatGroq
|
20 |
+
from langchain.document_loaders import ArxivLoader
|
21 |
+
from langchain.vectorstores import Chroma
|
22 |
+
from langchain.chains import RetrievalQA
|
23 |
+
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
24 |
+
from huggingface_hub import login
|
25 |
+
login(hugging_api_key)
|
26 |
+
embedding_model = HuggingFaceHubEmbeddings(huggingfacehub_api_token=hugging_api_key)
|
27 |
+
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key = "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")
|
28 |
+
|
29 |
+
def display_results(result):
|
30 |
+
return "\n".join(result) # Join each entry with double newlines for better readability
|
31 |
+
|
32 |
+
def summarize_pdf(pdf_file_path, max_length):
|
33 |
+
# summarizer = pipeline('summarization', model='allenai/led-large-16384-arxiv', min_length=100, max_length=max_length, device=0)
|
34 |
+
loader = PdfReader(pdf_file_path)
|
35 |
+
text = """ """
|
36 |
+
for page in loader.pages:
|
37 |
+
text += page.extract_text()
|
38 |
+
|
39 |
+
text_splitter = TokenTextSplitter(chunk_size=8192, chunk_overlap=1000)
|
40 |
+
chunks = text_splitter.split_text(text)
|
41 |
+
summary = ""
|
42 |
+
for i in range(len(chunks)):
|
43 |
+
# text = chunks[i].page_content
|
44 |
+
text = chunks[i]
|
45 |
+
summary += summarize_text(text)
|
46 |
+
# summary = str(max_length)
|
47 |
+
return summary
|
48 |
+
|
49 |
+
def summarize_text(text):
|
50 |
+
sum_client = Groq(api_key="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")
|
51 |
+
messages = []
|
52 |
+
# messages.append({"role": "system", "content": "You are arxiv paper summarizer. If I give you the doi number, you should only output summarization. Summarization should be more than 10% words of the paper. For example, in the paper there are 500 words, than summarization should be more than 50 words."})
|
53 |
+
messages.append({"role": "system", "content": "You are summarizer. If I give you the whole text you should summarize it. And you don't need the title and author"})
|
54 |
+
messages = messages + [
|
55 |
+
{
|
56 |
+
"role": "user",
|
57 |
+
"content": f"Summarize the paper. The whole text is {text}",
|
58 |
+
},
|
59 |
+
]
|
60 |
+
response = sum_client.chat.completions.create(
|
61 |
+
messages=messages,
|
62 |
+
model="llama3-70b-8192",
|
63 |
+
temperature=0,
|
64 |
+
max_tokens=8192,
|
65 |
+
top_p=1,
|
66 |
+
stop=None
|
67 |
+
)
|
68 |
+
text_summary = response.choices[0].message.content
|
69 |
+
return text_summary
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
def remove_first_sentence_and_title(text):
|
75 |
+
# Remove the first sentence
|
76 |
+
first_sentence_end = text.find('. ') + 2 # Find the end of the first sentence
|
77 |
+
text_without_first_sentence = text[first_sentence_end:]
|
78 |
+
|
79 |
+
# Remove the title
|
80 |
+
title_start = text_without_first_sentence.find('**Title:**')
|
81 |
+
if title_start != -1:
|
82 |
+
title_end = text_without_first_sentence.find('\n', title_start)
|
83 |
+
if title_end != -1:
|
84 |
+
text_without_title = text_without_first_sentence[:title_start] + text_without_first_sentence[title_end+1:]
|
85 |
+
else:
|
86 |
+
text_without_title = text_without_first_sentence[:title_start]
|
87 |
+
else:
|
88 |
+
text_without_title = text_without_first_sentence
|
89 |
+
|
90 |
+
return text_without_title.strip()
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def summarize_arxiv_pdf(query):
|
95 |
+
loader = ArxivLoader(query=query, load_max_docs=10)
|
96 |
+
documents = loader.load()
|
97 |
+
text_splitter = TokenTextSplitter(chunk_size=5700, chunk_overlap=100)
|
98 |
+
chunks = text_splitter.split_documents(documents)
|
99 |
+
|
100 |
+
text = documents[0].page_content
|
101 |
+
|
102 |
+
|
103 |
+
ref_summary = ""
|
104 |
+
for i in range(len(chunks)):
|
105 |
+
text = chunks[i].page_content
|
106 |
+
ref_summary += summarize_text(text)
|
107 |
+
# ref_summary = ref_summary.split('paper:')[1]
|
108 |
+
# ref_summary = remove_first_sentence_and_title(ref_summary)
|
109 |
+
ref_summary = ref_summary.replace("Here is a summary of the paper:", "").strip()
|
110 |
+
arxiv_summary = loader.get_summaries_as_docs()
|
111 |
+
|
112 |
+
summaries = []
|
113 |
+
for doc in arxiv_summary:
|
114 |
+
title = doc.metadata.get("Title")
|
115 |
+
authors = doc.metadata.get("Authors")
|
116 |
+
url = doc.metadata.get("Entry ID")
|
117 |
+
summary = doc.page_content
|
118 |
+
summaries.append(f"**{title}**\n")
|
119 |
+
summaries.append(f"**Authors:** {authors}\n")
|
120 |
+
summaries.append(f"**View full paper:** [Link to paper]({url})\n")
|
121 |
+
summaries.append(f"**Summary:** {summary}\n")
|
122 |
+
summaries.append(f"**Lazyman Summary:**\n ")
|
123 |
+
summaries.append(f"{ref_summary}")
|
124 |
+
summaries = display_results(summaries)
|
125 |
+
print(summaries)
|
126 |
+
return summaries
|
127 |
+
|
128 |
+
|
129 |
+
client = AsyncGroq(api_key="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")
|
130 |
+
|
131 |
+
async def chat_with_replit(message, history):
|
132 |
+
messages = []
|
133 |
+
|
134 |
+
for chat in history:
|
135 |
+
user = str(chat[0])
|
136 |
+
assistant = str(chat[1])
|
137 |
+
|
138 |
+
messages.append({"role": "system", "content": "You are assistor. I will ask you some questions than you should answer!"})
|
139 |
+
messages.append({"role": 'user', "content": user})
|
140 |
+
messages.append({"role": 'assistant', "content": assistant})
|
141 |
+
|
142 |
+
messages = messages + [
|
143 |
+
{
|
144 |
+
"role": "user",
|
145 |
+
"content": str(message),
|
146 |
+
},
|
147 |
+
]
|
148 |
+
|
149 |
+
print(messages)
|
150 |
+
|
151 |
+
response_content = ""
|
152 |
+
stream = await client.chat.completions.create(
|
153 |
+
messages=messages,
|
154 |
+
model="llama3-70b-8192",
|
155 |
+
temperature=0,
|
156 |
+
max_tokens=1024,
|
157 |
+
top_p=1,
|
158 |
+
stop=None,
|
159 |
+
stream=True,
|
160 |
+
)
|
161 |
+
async for chunk in stream:
|
162 |
+
content = chunk.choices[0].delta.content
|
163 |
+
if content:
|
164 |
+
response_content += chunk.choices[0].delta.content
|
165 |
+
yield response_content
|
166 |
+
|
167 |
+
js = """<script src="https://replit.com/public/js/replit-badge-v2.js" theme="dark" position="bottom-right"></script>"""
|
168 |
+
|
169 |
+
|
170 |
+
async def chat_with_replit_pdf(message, history, doi_num):
|
171 |
+
messages = []
|
172 |
+
|
173 |
+
old_doi = "old"
|
174 |
+
if old_doi != doi_num:
|
175 |
+
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
|
176 |
+
documents = loader.load_and_split()
|
177 |
+
metadata = documents[0].metadata
|
178 |
+
vector_store = Chroma.from_documents(documents, embedding_model)
|
179 |
+
old_doi = doi_num
|
180 |
+
def retrieve_relevant_content(user_query):
|
181 |
+
results = vector_store.similarity_search(user_query, k=3)
|
182 |
+
relevant_content = "\n\n".join([doc.page_content for doc in results])
|
183 |
+
return relevant_content
|
184 |
+
relevant_content = retrieve_relevant_content(message)
|
185 |
+
|
186 |
+
|
187 |
+
messages = messages + [
|
188 |
+
{
|
189 |
+
"role": "user",
|
190 |
+
"content": str(message),
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"role": "system",
|
194 |
+
"content": f"You should answer about this arxiv paper for {doi_num}.\n"
|
195 |
+
f"This is the metadata of the paper:{metadata}.\n"
|
196 |
+
f"This is relevant information of the paper:{relevant_content}.\n"
|
197 |
+
}
|
198 |
+
]
|
199 |
+
|
200 |
+
print(messages)
|
201 |
+
|
202 |
+
response_content = ""
|
203 |
+
stream = await client.chat.completions.create(
|
204 |
+
messages=messages,
|
205 |
+
model="llama3-70b-8192",
|
206 |
+
temperature=0,
|
207 |
+
max_tokens=1024,
|
208 |
+
top_p=1,
|
209 |
+
stop=None,
|
210 |
+
stream=False,
|
211 |
+
)
|
212 |
+
return stream.choices[0].message.content;
|
213 |
+
|
214 |
+
|
215 |
+
with gr.Blocks() as app:
|
216 |
+
with gr.Tab(label="Arxiv summarization"):
|
217 |
+
with gr.Column():
|
218 |
+
number = gr.Textbox(label="Enter your arxiv number")
|
219 |
+
sumarxiv_btn = gr.Button(value="summarize-arxiv")
|
220 |
+
with gr.Column():
|
221 |
+
outputs = gr.Markdown(label="Summary", height=1000)
|
222 |
+
sumarxiv_btn.click(summarize_arxiv_pdf, inputs=number, outputs=outputs)
|
223 |
+
with gr.Tab(label="Local summarization"):
|
224 |
+
with gr.Row():
|
225 |
+
with gr.Column():
|
226 |
+
input_path = gr.File(label="Upload PDF file")
|
227 |
+
with gr.Column():
|
228 |
+
# set_temperature = gr.Slider(0, 1, value=0, step=0.1, label="temperature")
|
229 |
+
set_max_length = gr.Slider(512, 4096, value=2048, step=512, label="max length")
|
230 |
+
sumlocal_btn = gr.Button(value="summarize-local")
|
231 |
+
with gr.Row():
|
232 |
+
output_local = gr.Markdown(label="summary", height=1000)
|
233 |
+
sumlocal_btn.click(summarize_pdf, inputs=[input_path, set_max_length], outputs=output_local)
|
234 |
+
with gr.Tab(label="ChatBot"):
|
235 |
+
gr.ChatInterface(chat_with_replit,
|
236 |
+
examples=[
|
237 |
+
"Explain about the attention is all you need",
|
238 |
+
"Who is the inventor of the GAN",
|
239 |
+
"What is the main idea style transfer?"
|
240 |
+
])
|
241 |
+
with gr.Tab(label="Chat with pdf"):
|
242 |
+
gr.ChatInterface(fn = chat_with_replit_pdf,
|
243 |
+
additional_inputs = [
|
244 |
+
gr.Textbox(label="doi", placeholder="Enter doi number")
|
245 |
+
],
|
246 |
+
type="messages")
|
247 |
+
app.launch()
|