Alina Lozovskaia
debugging the codebase
1489ff1
raw
history blame
12.6 kB
import os
import pandas as pd
import logging
import time
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
FAQ_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import (
API,
DYNAMIC_INFO_FILE_PATH,
DYNAMIC_INFO_PATH,
DYNAMIC_INFO_REPO,
EVAL_REQUESTS_PATH,
EVAL_RESULTS_PATH,
H4_TOKEN,
IS_PUBLIC,
QUEUE_REPO,
REPO_ID,
RESULTS_REPO,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.scripts.update_all_request_files import update_dynamic_files
from src.submission.submit import add_new_eval
from src.tools.collections import update_collections
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor ** attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def init_space(full_init: bool = True):
"""Initializes the application space, loading only necessary data."""
if full_init:
# These downloads only occur on full initialization
try:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
except Exception:
restart_space()
# Always retrieve the leaderboard DataFrame
raw_data, original_df = get_leaderboard_df(
results_path=EVAL_RESULTS_PATH,
requests_path=EVAL_REQUESTS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
if full_init:
# Collection update only happens on full initialization
update_collections(original_df)
leaderboard_df = original_df.copy()
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return leaderboard_df, raw_data, original_df, eval_queue_dfs
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, raw_data, original_df, eval_queue_dfs = init_space(full_init=do_full_init)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Data processing for plots now only on demand in the respective Gradio tab
def load_and_create_plots():
plot_df = create_plot_df(create_scores_df(raw_data))
return plot_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = Leaderboard(
value=leaderboard_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default
],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[
AutoEvalColumn.model.name,
AutoEvalColumn.fullname.name,
AutoEvalColumn.license.name
],
hide_columns=[
c.name
for c in fields(AutoEvalColumn)
if c.hidden
],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True),
ColumnFilter(AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
],
bool_checkboxgroup_label="Hide models"
)
with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
[AutoEvalColumn.average.name],
title="Average of Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
BENCHMARK_COLS,
title="Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()