Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
•
2293858
1
Parent(s):
e34e357
Updated collections.py
Browse files- src/populate.py +0 -3
- src/tools/collections.py +48 -53
src/populate.py
CHANGED
@@ -15,12 +15,9 @@ def get_leaderboard_df(
|
|
15 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
16 |
all_data_json = [v.to_dict() for v in raw_data]
|
17 |
all_data_json.append(baseline_row)
|
18 |
-
# print([data for data in all_data_json if data["model_name_for_query"] == "databricks/dbrx-base"])
|
19 |
filter_models_flags(all_data_json)
|
20 |
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
22 |
-
# print(df.columns)
|
23 |
-
# print(df[df["model_name_for_query"] == "databricks/dbrx-base"])
|
24 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
25 |
df = df[cols].round(decimals=2)
|
26 |
|
|
|
15 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
16 |
all_data_json = [v.to_dict() for v in raw_data]
|
17 |
all_data_json.append(baseline_row)
|
|
|
18 |
filter_models_flags(all_data_json)
|
19 |
|
20 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
|
|
21 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
22 |
df = df[cols].round(decimals=2)
|
23 |
|
src/tools/collections.py
CHANGED
@@ -17,65 +17,60 @@ intervals = {
|
|
17 |
}
|
18 |
|
19 |
|
20 |
-
def
|
21 |
-
"""
|
22 |
-
|
23 |
-
|
24 |
-
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
25 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
|
|
26 |
|
27 |
-
cur_best_models = []
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
continue
|
33 |
-
for size in intervals:
|
34 |
-
# We filter the df to gather the relevant models
|
35 |
-
type_emoji = [t[0] for t in type.value.symbol]
|
36 |
-
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
37 |
|
38 |
-
numeric_interval = pd.IntervalIndex([intervals[size]])
|
39 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
40 |
-
filtered_df = filtered_df.loc[mask]
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
best_models = list(
|
43 |
-
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
|
44 |
)
|
45 |
-
print(
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
item_type="model",
|
56 |
-
exists_ok=True,
|
57 |
-
note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
|
58 |
-
token=H4_TOKEN,
|
59 |
-
)
|
60 |
-
if (
|
61 |
-
len(collection.items) > cur_len_collection
|
62 |
-
): # we added an item - we make sure its position is correct
|
63 |
-
item_object_id = collection.items[-1].item_object_id
|
64 |
-
update_collection_item(
|
65 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
66 |
-
)
|
67 |
-
cur_len_collection = len(collection.items)
|
68 |
-
cur_best_models.append(model)
|
69 |
-
break
|
70 |
-
except HfHubHTTPError:
|
71 |
-
continue
|
72 |
-
|
73 |
-
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
74 |
-
for item in collection.items:
|
75 |
-
if item.item_id not in cur_best_models:
|
76 |
-
try:
|
77 |
-
delete_collection_item(
|
78 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
79 |
-
)
|
80 |
-
except HfHubHTTPError:
|
81 |
-
continue
|
|
|
17 |
}
|
18 |
|
19 |
|
20 |
+
def filter_by_type_and_size(df, model_type, size_interval):
|
21 |
+
"""Filter DataFrame by model type and parameter size interval."""
|
22 |
+
type_emoji = model_type.value.symbol[0]
|
23 |
+
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
|
|
|
24 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
25 |
+
mask = params_column.apply(lambda x: x in size_interval)
|
26 |
+
return filtered_df.loc[mask]
|
27 |
|
|
|
28 |
|
29 |
+
def add_models_to_collection(collection, models, model_type, size):
|
30 |
+
"""Add best models to the collection and update positions."""
|
31 |
+
cur_len_collection = len(collection.items)
|
32 |
+
for ix, model in enumerate(models, start=1):
|
33 |
+
try:
|
34 |
+
collection = add_collection_item(
|
35 |
+
PATH_TO_COLLECTION,
|
36 |
+
item_id=model,
|
37 |
+
item_type="model",
|
38 |
+
exists_ok=True,
|
39 |
+
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
|
40 |
+
token=H4_TOKEN,
|
41 |
+
)
|
42 |
+
# Ensure position is correct if item was added
|
43 |
+
if len(collection.items) > cur_len_collection:
|
44 |
+
item_object_id = collection.items[-1].item_object_id
|
45 |
+
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
|
46 |
+
cur_len_collection = len(collection.items)
|
47 |
+
break # assuming we only add the top model
|
48 |
+
except HfHubHTTPError:
|
49 |
continue
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
+
def update_collections(df: DataFrame):
|
53 |
+
"""Update collections by filtering and adding the best models."""
|
54 |
+
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
55 |
+
cur_best_models = []
|
56 |
+
|
57 |
+
for model_type in ModelType:
|
58 |
+
if not model_type.value.name:
|
59 |
+
continue
|
60 |
+
for size, interval in intervals.items():
|
61 |
+
filtered_df = filter_by_type_and_size(df, model_type, interval)
|
62 |
best_models = list(
|
63 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name][:10]
|
64 |
)
|
65 |
+
print(model_type.value.symbol, size, best_models[:10])
|
66 |
+
add_models_to_collection(collection, best_models, model_type, size)
|
67 |
+
cur_best_models.extend(best_models)
|
68 |
|
69 |
+
# Cleanup
|
70 |
+
existing_models = {item.item_id for item in collection.items}
|
71 |
+
to_remove = existing_models - set(cur_best_models)
|
72 |
+
for item_id in to_remove:
|
73 |
+
try:
|
74 |
+
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
75 |
+
except HfHubHTTPError:
|
76 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|