Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
Β·
2e74c81
1
Parent(s):
122c7af
bugfix and populate refactoring
Browse files- app.py +7 -9
- src/envs.py +3 -0
- src/populate.py +14 -17
app.py
CHANGED
@@ -87,18 +87,19 @@ def init_space(full_init: bool = True):
|
|
87 |
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
|
88 |
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
|
89 |
|
90 |
-
raw_data,
|
91 |
results_path=EVAL_RESULTS_PATH,
|
92 |
requests_path=EVAL_REQUESTS_PATH,
|
93 |
dynamic_path=DYNAMIC_INFO_FILE_PATH,
|
94 |
cols=COLS,
|
95 |
benchmark_cols=BENCHMARK_COLS,
|
96 |
)
|
97 |
-
update_collections(
|
98 |
-
|
|
|
99 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
100 |
|
101 |
-
return leaderboard_df, raw_data, eval_queue_dfs
|
102 |
|
103 |
|
104 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
@@ -107,7 +108,7 @@ do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
|
107 |
|
108 |
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
|
109 |
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
|
110 |
-
leaderboard_df, raw_data, eval_queue_dfs = init_space(full_init=do_full_init)
|
111 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
112 |
|
113 |
|
@@ -335,8 +336,7 @@ with demo:
|
|
335 |
|
336 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
337 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
338 |
-
|
339 |
-
value=leaderboard_df[COLS], # UPDATED
|
340 |
headers=COLS,
|
341 |
datatype=TYPES,
|
342 |
visible=False,
|
@@ -398,7 +398,6 @@ with demo:
|
|
398 |
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
399 |
with gr.Row():
|
400 |
with gr.Column():
|
401 |
-
# UPDATED
|
402 |
plot_df = load_and_create_plots()
|
403 |
chart = create_metric_plot_obj(
|
404 |
plot_df,
|
@@ -407,7 +406,6 @@ with demo:
|
|
407 |
)
|
408 |
gr.Plot(value=chart, min_width=500)
|
409 |
with gr.Column():
|
410 |
-
# UPDATED
|
411 |
plot_df = load_and_create_plots()
|
412 |
chart = create_metric_plot_obj(
|
413 |
plot_df,
|
|
|
87 |
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
|
88 |
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
|
89 |
|
90 |
+
raw_data, original_df = get_leaderboard_df(
|
91 |
results_path=EVAL_RESULTS_PATH,
|
92 |
requests_path=EVAL_REQUESTS_PATH,
|
93 |
dynamic_path=DYNAMIC_INFO_FILE_PATH,
|
94 |
cols=COLS,
|
95 |
benchmark_cols=BENCHMARK_COLS,
|
96 |
)
|
97 |
+
update_collections(original_df)
|
98 |
+
leaderboard_df = original_df.copy()
|
99 |
+
|
100 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
101 |
|
102 |
+
return leaderboard_df, raw_data, original_df, eval_queue_dfs
|
103 |
|
104 |
|
105 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
|
|
108 |
|
109 |
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
|
110 |
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
|
111 |
+
leaderboard_df, raw_data, original_df, eval_queue_dfs = init_space(full_init=do_full_init)
|
112 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
113 |
|
114 |
|
|
|
336 |
|
337 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
338 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
339 |
+
value=original_df[COLS],
|
|
|
340 |
headers=COLS,
|
341 |
datatype=TYPES,
|
342 |
visible=False,
|
|
|
398 |
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
399 |
with gr.Row():
|
400 |
with gr.Column():
|
|
|
401 |
plot_df = load_and_create_plots()
|
402 |
chart = create_metric_plot_obj(
|
403 |
plot_df,
|
|
|
406 |
)
|
407 |
gr.Plot(value=chart, min_width=500)
|
408 |
with gr.Column():
|
|
|
409 |
plot_df = load_and_create_plots()
|
410 |
chart = create_metric_plot_obj(
|
411 |
plot_df,
|
src/envs.py
CHANGED
@@ -16,6 +16,9 @@ PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
|
16 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
17 |
|
18 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
|
|
|
|
|
|
19 |
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
|
|
16 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
17 |
|
18 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
19 |
+
# Check if the CACHE_PATH is a directory and if we have write access, if not set to '.'
|
20 |
+
if not os.path.isdir(CACHE_PATH) or not os.access(CACHE_PATH, os.W_OK):
|
21 |
+
CACHE_PATH = "."
|
22 |
|
23 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
24 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
src/populate.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
import pandas as pd
|
4 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
5 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
@@ -26,25 +27,20 @@ def _process_model_data(entry, model_name_key="model", revision_key="revision"):
|
|
26 |
|
27 |
def get_evaluation_queue_df(save_path, cols):
|
28 |
"""Generate dataframes for pending, running, and finished evaluation entries."""
|
|
|
29 |
all_evals = []
|
30 |
-
|
31 |
-
for
|
32 |
-
if
|
|
|
|
|
|
|
|
|
33 |
continue
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
all_evals.append(_process_model_data(data))
|
39 |
-
else:
|
40 |
-
# Optionally handle directory contents if needed
|
41 |
-
sub_entries = os.listdir(file_path)
|
42 |
-
for sub_entry in sub_entries:
|
43 |
-
sub_file_path = os.path.join(file_path, sub_entry)
|
44 |
-
if os.path.isfile(sub_file_path):
|
45 |
-
data = _load_json_data(sub_file_path)
|
46 |
-
if data:
|
47 |
-
all_evals.append(_process_model_data(data))
|
48 |
|
49 |
# Organizing data by status
|
50 |
status_map = {
|
@@ -72,3 +68,4 @@ def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmar
|
|
72 |
df = df[cols].round(decimals=2)
|
73 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
74 |
return raw_data, df
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import pathlib
|
4 |
import pandas as pd
|
5 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
6 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
|
|
27 |
|
28 |
def get_evaluation_queue_df(save_path, cols):
|
29 |
"""Generate dataframes for pending, running, and finished evaluation entries."""
|
30 |
+
save_path = pathlib.Path(save_path)
|
31 |
all_evals = []
|
32 |
+
|
33 |
+
for path in save_path.rglob('*'):
|
34 |
+
if path.is_dir():
|
35 |
+
continue
|
36 |
+
if path.name.startswith('.'):
|
37 |
+
continue
|
38 |
+
if path.name.endswith('.md'):
|
39 |
continue
|
40 |
+
|
41 |
+
data = _load_json_data(path)
|
42 |
+
if data:
|
43 |
+
all_evals.append(_process_model_data(data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Organizing data by status
|
46 |
status_map = {
|
|
|
68 |
df = df[cols].round(decimals=2)
|
69 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
70 |
return raw_data, df
|
71 |
+
|