Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
·
d95d4a1
1
Parent(s):
9b7814c
apply code style and quality checks to read_evals.py
Browse files- src/leaderboard/read_evals.py +27 -29
src/leaderboard/read_evals.py
CHANGED
@@ -16,36 +16,36 @@ from src.display.formatting import make_clickable_model
|
|
16 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
|
17 |
|
18 |
# Configure logging
|
19 |
-
logging.basicConfig(level=logging.INFO, format=
|
|
|
20 |
|
21 |
@dataclass
|
22 |
class EvalResult:
|
23 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
24 |
-
eval_name: str
|
25 |
-
full_model: str
|
26 |
org: Optional[str]
|
27 |
model: str
|
28 |
-
revision: str
|
29 |
results: Dict[str, float]
|
30 |
precision: Precision = Precision.Unknown
|
31 |
-
model_type: ModelType = ModelType.Unknown
|
32 |
weight_type: WeightType = WeightType.Original
|
33 |
-
architecture: str = "Unknown"
|
34 |
license: str = "?"
|
35 |
likes: int = 0
|
36 |
num_params: int = 0
|
37 |
-
date: str = ""
|
38 |
still_on_hub: bool = True
|
39 |
is_merge: bool = False
|
40 |
not_flagged: bool = False
|
41 |
status: str = "FINISHED"
|
42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
43 |
tags: List[str] = field(default_factory=list)
|
44 |
-
|
45 |
-
|
46 |
@classmethod
|
47 |
-
def init_from_json_file(cls, json_filepath: str) ->
|
48 |
-
with open(json_filepath,
|
49 |
data = json.load(fp)
|
50 |
|
51 |
config = data.get("config_general", {})
|
@@ -72,7 +72,7 @@ class EvalResult:
|
|
72 |
model=model,
|
73 |
results=results,
|
74 |
precision=precision,
|
75 |
-
revision=config.get("model_sha", "")
|
76 |
)
|
77 |
|
78 |
@staticmethod
|
@@ -118,9 +118,8 @@ class EvalResult:
|
|
118 |
|
119 |
mean_acc = np.mean(accs) * 100.0
|
120 |
results[task.benchmark] = mean_acc
|
121 |
-
|
122 |
-
return results
|
123 |
|
|
|
124 |
|
125 |
def update_with_request_file(self, requests_path):
|
126 |
"""Finds the relevant request file for the current model and updates info with it."""
|
@@ -130,17 +129,17 @@ class EvalResult:
|
|
130 |
logging.warning(f"No request file for {self.org}/{self.model}")
|
131 |
self.status = "FAILED"
|
132 |
return
|
133 |
-
|
134 |
with open(request_file, "r") as f:
|
135 |
request = json.load(f)
|
136 |
-
|
137 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
138 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
139 |
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
140 |
self.date = request.get("submitted_time", "")
|
141 |
self.architecture = request.get("architectures", "Unknown")
|
142 |
self.status = request.get("status", "FAILED")
|
143 |
-
|
144 |
except FileNotFoundError:
|
145 |
self.status = "FAILED"
|
146 |
logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
|
@@ -154,7 +153,6 @@ class EvalResult:
|
|
154 |
self.status = "FAILED"
|
155 |
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
156 |
|
157 |
-
|
158 |
def update_with_dynamic_file_dict(self, file_dict):
|
159 |
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
160 |
# Default values set for optional or potentially missing keys.
|
@@ -162,11 +160,10 @@ class EvalResult:
|
|
162 |
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
163 |
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
164 |
self.tags = file_dict.get("tags", [])
|
165 |
-
|
166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
167 |
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
168 |
|
169 |
-
|
170 |
def to_dict(self):
|
171 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
172 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
@@ -185,8 +182,10 @@ class EvalResult:
|
|
185 |
AutoEvalColumn.likes.name: self.likes,
|
186 |
AutoEvalColumn.params.name: self.num_params,
|
187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
188 |
-
AutoEvalColumn.merged.name: not(
|
189 |
-
AutoEvalColumn.moe.name: not (
|
|
|
|
|
190 |
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
191 |
}
|
192 |
|
@@ -194,16 +193,16 @@ class EvalResult:
|
|
194 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
195 |
|
196 |
return data_dict
|
197 |
-
|
198 |
|
199 |
def get_request_file_for_model(requests_path, model_name, precision):
|
200 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
201 |
requests_path = Path(requests_path)
|
202 |
pattern = f"{model_name}_eval_request_*.json"
|
203 |
-
|
204 |
# Using pathlib to find files matching the pattern
|
205 |
request_files = list(requests_path.glob(pattern))
|
206 |
-
|
207 |
# Sort the files by name in descending order to mimic 'reverse=True'
|
208 |
request_files.sort(reverse=True)
|
209 |
|
@@ -214,7 +213,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
214 |
req_content = json.load(f)
|
215 |
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
216 |
request_file = str(request_file)
|
217 |
-
|
218 |
# Return empty string if no file found that matches criteria
|
219 |
return request_file
|
220 |
|
@@ -223,9 +222,9 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
223 |
"""From the path of the results folder root, extract all needed info for results"""
|
224 |
with open(dynamic_path) as f:
|
225 |
dynamic_data = json.load(f)
|
226 |
-
|
227 |
results_path = Path(results_path)
|
228 |
-
model_files = list(results_path.rglob(
|
229 |
model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
|
230 |
|
231 |
eval_results = {}
|
@@ -260,4 +259,3 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
260 |
continue
|
261 |
|
262 |
return results
|
263 |
-
|
|
|
16 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
|
17 |
|
18 |
# Configure logging
|
19 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
20 |
+
|
21 |
|
22 |
@dataclass
|
23 |
class EvalResult:
|
24 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
25 |
+
eval_name: str # org_model_precision (uid)
|
26 |
+
full_model: str # org/model (path on hub)
|
27 |
org: Optional[str]
|
28 |
model: str
|
29 |
+
revision: str # commit hash, "" if main
|
30 |
results: Dict[str, float]
|
31 |
precision: Precision = Precision.Unknown
|
32 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
33 |
weight_type: WeightType = WeightType.Original
|
34 |
+
architecture: str = "Unknown" # From config file
|
35 |
license: str = "?"
|
36 |
likes: int = 0
|
37 |
num_params: int = 0
|
38 |
+
date: str = "" # submission date of request file
|
39 |
still_on_hub: bool = True
|
40 |
is_merge: bool = False
|
41 |
not_flagged: bool = False
|
42 |
status: str = "FINISHED"
|
43 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
44 |
tags: List[str] = field(default_factory=list)
|
45 |
+
|
|
|
46 |
@classmethod
|
47 |
+
def init_from_json_file(cls, json_filepath: str) -> "EvalResult":
|
48 |
+
with open(json_filepath, "r") as fp:
|
49 |
data = json.load(fp)
|
50 |
|
51 |
config = data.get("config_general", {})
|
|
|
72 |
model=model,
|
73 |
results=results,
|
74 |
precision=precision,
|
75 |
+
revision=config.get("model_sha", ""),
|
76 |
)
|
77 |
|
78 |
@staticmethod
|
|
|
118 |
|
119 |
mean_acc = np.mean(accs) * 100.0
|
120 |
results[task.benchmark] = mean_acc
|
|
|
|
|
121 |
|
122 |
+
return results
|
123 |
|
124 |
def update_with_request_file(self, requests_path):
|
125 |
"""Finds the relevant request file for the current model and updates info with it."""
|
|
|
129 |
logging.warning(f"No request file for {self.org}/{self.model}")
|
130 |
self.status = "FAILED"
|
131 |
return
|
132 |
+
|
133 |
with open(request_file, "r") as f:
|
134 |
request = json.load(f)
|
135 |
+
|
136 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
137 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
138 |
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
139 |
self.date = request.get("submitted_time", "")
|
140 |
self.architecture = request.get("architectures", "Unknown")
|
141 |
self.status = request.get("status", "FAILED")
|
142 |
+
|
143 |
except FileNotFoundError:
|
144 |
self.status = "FAILED"
|
145 |
logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
|
|
|
153 |
self.status = "FAILED"
|
154 |
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
155 |
|
|
|
156 |
def update_with_dynamic_file_dict(self, file_dict):
|
157 |
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
158 |
# Default values set for optional or potentially missing keys.
|
|
|
160 |
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
161 |
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
162 |
self.tags = file_dict.get("tags", [])
|
163 |
+
|
164 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
165 |
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
166 |
|
|
|
167 |
def to_dict(self):
|
168 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
169 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
|
|
182 |
AutoEvalColumn.likes.name: self.likes,
|
183 |
AutoEvalColumn.params.name: self.num_params,
|
184 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
185 |
+
AutoEvalColumn.merged.name: not ("merge" in self.tags if self.tags else False),
|
186 |
+
AutoEvalColumn.moe.name: not (
|
187 |
+
("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()
|
188 |
+
),
|
189 |
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
190 |
}
|
191 |
|
|
|
193 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
194 |
|
195 |
return data_dict
|
196 |
+
|
197 |
|
198 |
def get_request_file_for_model(requests_path, model_name, precision):
|
199 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
200 |
requests_path = Path(requests_path)
|
201 |
pattern = f"{model_name}_eval_request_*.json"
|
202 |
+
|
203 |
# Using pathlib to find files matching the pattern
|
204 |
request_files = list(requests_path.glob(pattern))
|
205 |
+
|
206 |
# Sort the files by name in descending order to mimic 'reverse=True'
|
207 |
request_files.sort(reverse=True)
|
208 |
|
|
|
213 |
req_content = json.load(f)
|
214 |
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
215 |
request_file = str(request_file)
|
216 |
+
|
217 |
# Return empty string if no file found that matches criteria
|
218 |
return request_file
|
219 |
|
|
|
222 |
"""From the path of the results folder root, extract all needed info for results"""
|
223 |
with open(dynamic_path) as f:
|
224 |
dynamic_data = json.load(f)
|
225 |
+
|
226 |
results_path = Path(results_path)
|
227 |
+
model_files = list(results_path.rglob("results_*.json"))
|
228 |
model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
|
229 |
|
230 |
eval_results = {}
|
|
|
259 |
continue
|
260 |
|
261 |
return results
|
|