Datasets-Convertor / app-backup.py
openfree's picture
Create app-backup.py
5322786 verified
import gradio as gr
import pandas as pd
import json
from io import BytesIO
import requests
def dataset_converter(input_file, conversion_type, parquet_url):
# Initialize variables for file data and extension
file_bytes = None
file_name = None
file_extension = None
# Read the input file if provided
if input_file is not None:
try:
file_bytes = input_file.read()
file_name = input_file.name
except AttributeError:
file_name = input_file
with open(file_name, "rb") as f:
file_bytes = f.read()
file_extension = file_name.lower().split('.')[-1]
# Conversion: CSV to Parquet
if conversion_type == "CSV to Parquet":
if input_file is None or file_extension != "csv":
raise ValueError("For CSV to Parquet conversion, please upload a CSV file. πŸ“„")
df = pd.read_csv(BytesIO(file_bytes))
output_file = "output.parquet"
df.to_parquet(output_file, index=False)
converted_format = "Parquet"
preview_str = df.head(10).to_string(index=False)
# Conversion: Parquet to CSV
elif conversion_type == "Parquet to CSV":
if input_file is None or file_extension != "parquet":
raise ValueError("For Parquet to CSV conversion, please upload a Parquet file. πŸ“„")
df = pd.read_parquet(BytesIO(file_bytes))
output_file = "output.csv"
df.to_csv(output_file, index=False)
converted_format = "CSV"
preview_str = df.head(10).to_string(index=False)
# Conversion: CSV to JSONL
elif conversion_type == "CSV to JSONL":
if input_file is None or file_extension != "csv":
raise ValueError("For CSV to JSONL conversion, please upload a CSV file. πŸ“„")
# Read CSV with latin1 encoding
df = pd.read_csv(BytesIO(file_bytes), encoding='latin1')
output_file = "metadata.jsonl"
total_data = []
for index, row in df.iterrows():
data = {}
file_name_val = None # Initialize file_name for each row
for column in df.columns:
if column == 'file_name':
file_name_val = row[column]
data[column] = row[column]
row_data = {"file_name": file_name_val, "ground_truth": json.dumps(data)}
total_data.append(row_data)
# Write JSONL output (using write mode so previous data is overwritten)
with open(output_file, 'w', encoding='utf-8') as f:
for row_data in total_data:
f.write(json.dumps(row_data) + '\n')
converted_format = "JSONL"
preview_str = df.head(10).to_string(index=False)
# Conversion: Parquet to JSONL
elif conversion_type == "Parquet to JSONL":
# Use uploaded file if available; otherwise try the provided URL
if input_file is not None:
df = pd.read_parquet(BytesIO(file_bytes))
elif parquet_url:
response = requests.get(parquet_url)
response.raise_for_status() # Ensure the request was successful
df = pd.read_parquet(BytesIO(response.content))
file_name = "from_url.parquet"
else:
raise ValueError("For Parquet to JSONL conversion, please upload a file or provide a URL. 🌐")
output_file = "output.jsonl"
# Recursive function to decode bytes to UTF-8 strings
def recursive_sanitize(val):
if isinstance(val, bytes):
return val.decode("utf-8", errors="replace")
elif isinstance(val, dict):
return {k: recursive_sanitize(v) for k, v in val.items()}
elif isinstance(val, list):
return [recursive_sanitize(item) for item in val]
else:
return val
records = df.to_dict(orient="records")
with open(output_file, "w", encoding="utf-8") as f:
for record in records:
sanitized_record = recursive_sanitize(record)
f.write(json.dumps(sanitized_record, ensure_ascii=False) + "\n")
converted_format = "JSONL"
preview_str = df.head(10).to_string(index=False)
else:
raise ValueError("Invalid conversion type selected. ⚠️")
info_message = (
f"Input file: {file_name if file_name is not None else 'N/A'}\n"
f"Converted file format: {converted_format}\n\n"
f"Preview (Top 10 Rows):\n{preview_str}\n\n"
"Community: https://discord.gg/openfreeai πŸš€"
)
return output_file, info_message
# Custom CSS for a modern and sleek look
custom_css = """
body {
background-color: #f4f4f4;
font-family: 'Helvetica Neue', Arial, sans-serif;
}
.gradio-container {
max-width: 900px;
margin: 40px auto;
padding: 20px;
background-color: #ffffff;
border-radius: 12px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
}
h1, h2 {
color: #333333;
}
.gradio-input, .gradio-output {
margin-bottom: 20px;
}
.gradio-button {
background-color: #4CAF50 !important;
color: white !important;
border: none !important;
padding: 10px 20px !important;
font-size: 16px !important;
border-radius: 6px !important;
cursor: pointer;
}
.gradio-button:hover {
background-color: #45a049 !important;
}
"""
with gr.Blocks(css=custom_css, title="Datasets Convertor") as demo:
gr.Markdown("# Datasets Convertor πŸš€")
gr.Markdown(
"Upload a CSV or Parquet file (or provide a Parquet file URL for Parquet to JSONL conversion) "
"and select the conversion type. The app converts the file to the desired format and displays a preview of the top 10 rows. ✨"
)
with gr.Row():
with gr.Column(scale=1):
input_file = gr.File(label="Upload CSV or Parquet File πŸ“„")
with gr.Column(scale=1):
conversion_type = gr.Radio(
choices=["CSV to Parquet", "Parquet to CSV", "CSV to JSONL", "Parquet to JSONL"],
label="Conversion Type πŸ”„"
)
# Optional URL input for Parquet to JSONL conversion
parquet_url = gr.Textbox(label="Parquet File URL (Optional) 🌐", placeholder="Enter URL if not uploading a file")
convert_button = gr.Button("Convert ⚑", elem_classes=["gradio-button"])
with gr.Row():
output_file = gr.File(label="Converted File πŸ’Ύ")
preview = gr.Textbox(label="Preview (Top 10 Rows) πŸ”", lines=15)
convert_button.click(
fn=dataset_converter,
inputs=[input_file, conversion_type, parquet_url],
outputs=[output_file, preview]
)
gr.Markdown("**Join our Community:** [https://discord.gg/openfreeai](https://discord.gg/openfreeai) 🀝")
demo.launch()