Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,62 +3,96 @@ import pandas as pd
|
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
|
6 |
-
def convert_hf_dataset(file_url
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
content = response.content
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
df.to_parquet(output_file, index=False)
|
27 |
-
converted_format = "Parquet"
|
28 |
-
elif file_url.lower().endswith(".parquet"):
|
29 |
-
# If it's a Parquet file, read it and convert to CSV
|
30 |
-
df = pd.read_parquet(BytesIO(content))
|
31 |
-
output_file = "output.csv"
|
32 |
-
df.to_csv(output_file, index=False)
|
33 |
-
converted_format = "CSV"
|
34 |
else:
|
35 |
-
|
36 |
-
|
37 |
-
# Create a preview
|
38 |
preview = df.head(10).to_string(index=False)
|
39 |
info_message = (
|
40 |
-
f"Input file: {
|
41 |
f"Converted file format: {converted_format}\n\n"
|
42 |
f"Preview (Top 10 Rows):\n{preview}"
|
43 |
)
|
44 |
-
|
45 |
return output_file, info_message
|
46 |
|
47 |
demo = gr.Interface(
|
48 |
fn=convert_hf_dataset,
|
49 |
-
inputs=
|
50 |
-
label="
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
outputs=[
|
54 |
gr.File(label="Converted File"),
|
55 |
gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
56 |
],
|
57 |
title="Hugging Face CSV <-> Parquet Converter",
|
58 |
description=(
|
59 |
-
"
|
60 |
-
"The app
|
61 |
-
"and
|
62 |
)
|
63 |
)
|
64 |
|
|
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
|
6 |
+
def convert_hf_dataset(input_file, file_url):
|
7 |
+
"""
|
8 |
+
This function accepts either an uploaded file or a Hugging Face dataset URL.
|
9 |
+
It automatically determines the file type (CSV or Parquet) based on the file extension,
|
10 |
+
converts the file to the opposite format, and returns the converted file along with a preview
|
11 |
+
of the top 10 rows.
|
12 |
+
"""
|
13 |
+
df = None
|
14 |
+
source = None
|
15 |
+
converted_format = None
|
16 |
+
output_file = None
|
17 |
|
18 |
+
# If no file is provided via upload and URL is empty, raise an error.
|
19 |
+
if input_file is None and (file_url is None or file_url.strip() == ""):
|
20 |
+
raise ValueError("Please provide an uploaded file or a Hugging Face dataset URL.")
|
|
|
21 |
|
22 |
+
if input_file is not None:
|
23 |
+
# Process the uploaded file.
|
24 |
+
source = input_file.name
|
25 |
+
file_extension = source.lower().split('.')[-1]
|
26 |
+
file_bytes = input_file.read() # read the file content
|
27 |
+
|
28 |
+
if file_extension == "csv":
|
29 |
+
df = pd.read_csv(BytesIO(file_bytes))
|
30 |
+
converted_format = "Parquet"
|
31 |
+
output_file = "output.parquet"
|
32 |
+
elif file_extension == "parquet":
|
33 |
+
df = pd.read_parquet(BytesIO(file_bytes))
|
34 |
+
converted_format = "CSV"
|
35 |
+
output_file = "output.csv"
|
36 |
+
else:
|
37 |
+
raise ValueError("Uploaded file must have a .csv or .parquet extension.")
|
38 |
+
else:
|
39 |
+
# Process the URL input.
|
40 |
+
file_url = file_url.strip()
|
41 |
+
if "huggingface.co" not in file_url:
|
42 |
+
raise ValueError("Please provide a URL from Hugging Face datasets.")
|
43 |
+
if not file_url.lower().startswith(("http://", "https://")):
|
44 |
+
file_url = "https://" + file_url
|
45 |
+
|
46 |
+
source = file_url.split('/')[-1]
|
47 |
+
response = requests.get(file_url)
|
48 |
+
response.raise_for_status()
|
49 |
+
content = response.content
|
50 |
+
|
51 |
+
if file_url.lower().endswith(".csv"):
|
52 |
+
df = pd.read_csv(BytesIO(content))
|
53 |
+
converted_format = "Parquet"
|
54 |
+
output_file = "output.parquet"
|
55 |
+
elif file_url.lower().endswith(".parquet"):
|
56 |
+
df = pd.read_parquet(BytesIO(content))
|
57 |
+
converted_format = "CSV"
|
58 |
+
output_file = "output.csv"
|
59 |
+
else:
|
60 |
+
raise ValueError("The URL must point to a .csv or .parquet file.")
|
61 |
+
|
62 |
+
# Convert the file: if CSV, convert to Parquet; if Parquet, convert to CSV.
|
63 |
+
if converted_format == "Parquet":
|
64 |
df.to_parquet(output_file, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
else:
|
66 |
+
df.to_csv(output_file, index=False)
|
67 |
+
|
68 |
+
# Create a preview (top 10 rows) of the DataFrame.
|
69 |
preview = df.head(10).to_string(index=False)
|
70 |
info_message = (
|
71 |
+
f"Input file: {source}\n"
|
72 |
f"Converted file format: {converted_format}\n\n"
|
73 |
f"Preview (Top 10 Rows):\n{preview}"
|
74 |
)
|
75 |
+
|
76 |
return output_file, info_message
|
77 |
|
78 |
demo = gr.Interface(
|
79 |
fn=convert_hf_dataset,
|
80 |
+
inputs=[
|
81 |
+
gr.File(label="Uploaded File (Optional)"),
|
82 |
+
gr.Textbox(
|
83 |
+
label="Hugging Face Dataset URL (Optional)",
|
84 |
+
placeholder="e.g., huggingface.co/datasets/username/dataset/filename.csv"
|
85 |
+
)
|
86 |
+
],
|
87 |
outputs=[
|
88 |
gr.File(label="Converted File"),
|
89 |
gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
90 |
],
|
91 |
title="Hugging Face CSV <-> Parquet Converter",
|
92 |
description=(
|
93 |
+
"Upload a file or enter the URL of a Hugging Face dataset file. "
|
94 |
+
"The app automatically detects the file type (.csv or .parquet), converts it to the opposite format, "
|
95 |
+
"and displays a preview of the top 10 rows."
|
96 |
)
|
97 |
)
|
98 |
|