Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,565 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 9dace64 7f98410 f3cae17 7f98410 0e14842 bce439c 3ab1623 0e14842 bce439c 0e14842 f3cae17 7f98410 f3cae17 7f98410 0e14842 f3cae17 b03c39e f3cae17 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 9dace64 7f98410 0e14842 b03c39e 1a0c9b6 b03c39e bce439c bf65a8f 0e14842 9dace64 3ab1623 9d997d8 822d196 3ab1623 7f98410 b03c39e 7f98410 0e14842 bce439c 7f98410 9dace64 7f98410 9dace64 a2bd23b 9dace64 fda85af bce439c 9dace64 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/korea-president-yoon"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# Return empty list since we're not using predefined images
return []
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
examples = [
"A man playing fetch with a golden retriever in a sunny park. He wears casual weekend clothes and throws a red frisbee with joy. The dog leaps gracefully through the air, tail wagging with excitement. Warm afternoon sunlight filters through the trees, creating a peaceful scene of companionship. [president yoon]",
"A soldier standing at attention in full military gear, holding a standard-issue rifle. His uniform is crisp and properly adorned with medals. Behind him, other soldiers march in formation during a military parade. The scene conveys discipline and duty. [president yoon]",
"A medieval knight in gleaming armor, holding an ornate sword and shield. He stands proudly in front of a majestic castle, his cape flowing in the wind. The shield bears intricate heraldic designs, and sunlight glints off his polished armor. [president yoon]",
"A charismatic political leader addressing a crowd from a podium. He wears a well-fitted suit and gestures confidently while speaking. The audience fills a large plaza, holding supportive banners and signs. News cameras capture the moment as he delivers his speech. [president yoon]",
"A man enjoying a peaceful morning at home, reading a newspaper at his breakfast table. He wears comfortable home clothes and sips coffee from a favorite mug. Sunlight streams through the kitchen window, and a house plant adds a touch of nature to the cozy domestic scene. [president yoon]",
"A businessman walking confidently through a modern office building. He carries a leather briefcase and wears a tailored navy suit. Floor-to-ceiling windows reveal a cityscape behind him, and his expression shows determination and purpose. [president yoon]"
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
gr.HTML('<div class="title"> President Yoon in KOREA </div>')
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-korea-president-yoon.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-korea-president-yoon.hf.space&countColor=%23263759" />
</a>""")
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery")
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |