Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from df import enhance, init_df
|
5 |
+
|
6 |
+
# Initialize DeepFilterNet model
|
7 |
+
model, df_state, _ = init_df()
|
8 |
+
|
9 |
+
def denoise_audio(audio):
|
10 |
+
# Load the input audio file
|
11 |
+
waveform, sample_rate = torchaudio.load(audio)
|
12 |
+
|
13 |
+
# Denoise the audio
|
14 |
+
enhanced_audio = enhance(model, df_state, waveform)
|
15 |
+
|
16 |
+
# Save and return the enhanced audio file
|
17 |
+
output_file = "enhanced_output.wav"
|
18 |
+
torchaudio.save(output_file, enhanced_audio, sample_rate)
|
19 |
+
|
20 |
+
return output_file
|
21 |
+
|
22 |
+
# Gradio interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=denoise_audio,
|
25 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
26 |
+
outputs="file",
|
27 |
+
title="DeepFilterNet Audio Denoising",
|
28 |
+
description="Upload an audio file to remove noise using DeepFilterNet."
|
29 |
+
)
|
30 |
+
|
31 |
+
iface.launch()
|