Spaces:
Sleeping
Sleeping
File size: 7,515 Bytes
7f9a235 db435b4 7f9a235 b71e276 7f9a235 b71e276 7f9a235 b71e276 6ea5c03 b71e276 7f9a235 0425d1c 7f9a235 b71e276 6ea5c03 b71e276 7724866 b71e276 0425d1c 7f9a235 b71e276 7f9a235 b71e276 7f9a235 db435b4 7f9a235 b71e276 db435b4 b71e276 7f9a235 b71e276 db435b4 b71e276 7f9a235 b71e276 7724866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import subprocess
import gradio as gr
import pandas as pd
from ansi2html import Ansi2HTMLConverter
ansi2html_converter = Ansi2HTMLConverter(inline=True)
def run_benchmark(kwargs):
for key, value in kwargs.copy().items():
if key.label == "Compare to Baseline":
baseline = value
kwargs.pop(key)
elif key.label == "experiment_name":
experiment_name = value
kwargs.pop(key)
elif key.label == "model":
model = value
kwargs.pop(key)
elif key.label == "task":
task = value
kwargs.pop(key)
elif key.label == "device":
device = value
kwargs.pop(key)
elif key.label == "backend":
backend = value
kwargs.pop(key)
elif key.label == "benchmark":
benchmark = value
kwargs.pop(key)
else:
continue
if baseline:
baseline_arguments = [
"optimum-benchmark",
"--config-dir",
"./configs",
"--config-name",
"base_config",
f"backend=pytorch",
f"task={task}",
f"model={model}",
f"device={device}",
f"benchmark={benchmark}",
f"experiment_name=baseline",
]
for component, value in kwargs.items():
if f"{benchmark}." in component.label:
label = component.label.replace(f"{benchmark}.", "benchmark.")
if isinstance(component, gr.Dataframe):
for sub_key, sub_value in zip(component.headers, value[0]):
baseline_arguments.append(f"++{label}.{sub_key}={sub_value}")
else:
baseline_arguments.append(f"{label}={value}")
# yield from run_experiment(baseline_arguments) but get the return code
baseline_return_code, html_text = yield from run_experiment(baseline_arguments, "")
if baseline_return_code is not None and baseline_return_code != 0:
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
return
else:
html_text = ""
arguments = [
"optimum-benchmark",
"--config-dir",
"./configs",
"--config-name",
"base_config",
f"task={task}",
f"model={model}",
f"device={device}",
f"backend={backend}",
f"benchmark={benchmark}",
f"experiment_name={experiment_name}",
]
for component, value in kwargs.items():
if f"{backend}." in component.label or f"{benchmark}." in component.label:
label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.")
if isinstance(component, gr.Dataframe):
for sub_key, sub_value in zip(component.headers, value[0]):
arguments.append(f"++{label}.{sub_key}={sub_value}")
else:
arguments.append(f"{label}={value}")
return_code, html_text = yield from run_experiment(arguments, html_text)
if return_code is not None and return_code != 0:
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
return
if baseline:
baseline_table = pd.read_csv(f"runs/baseline/{benchmark}_results.csv", index_col=0)
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
# concat tables
table = pd.concat([baseline_table, table], axis=0)
table = postprocess_table(table, experiment_name)
else:
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()})
yield gr.update(value=html_text), gr.update(interactive=True), table_update
return
def run_experiment(args, html_text=""):
command = "<br>".join(args)
html_text += f"<h3>Running command:</h3>{command}"
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False)
# stream subprocess output
process = subprocess.Popen(
args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
)
curr_ansi_text = ""
for ansi_line in iter(process.stdout.readline, ""):
# stream process output to stdout
print(ansi_line, end="")
# skip torch.distributed.nn.jit.instantiator messages
if "torch.distributed.nn.jit.instantiator" in ansi_line:
continue
# process download messages
if "Downloading " in curr_ansi_text and "Downloading " in ansi_line:
curr_ansi_text = curr_ansi_text.split("\n")[:-2]
print(curr_ansi_text)
curr_ansi_text.append(ansi_line)
curr_ansi_text = "\n".join(curr_ansi_text)
else:
# append line to ansi text
curr_ansi_text += ansi_line
# convert ansi to html
curr_html_text = ansi2html_converter.convert(curr_ansi_text)
# stream html output to gradio
cumul_html_text = html_text + "<br><h3>Streaming logs:</h3>" + curr_html_text
yield gr.update(value=cumul_html_text), gr.update(interactive=False), gr.update(visible=False)
return process.returncode, cumul_html_text
def postprocess_table(table, experiment_name):
table["experiment_name"] = ["baseline", experiment_name]
table = table.set_index("experiment_name")
table.reset_index(inplace=True)
if "forward.latency(s)" in table.columns:
table["forward.latency.speedup(%)"] = (
1 - table["forward.latency(s)"] / table["forward.latency(s)"].iloc[0]
) * 100
table["forward.latency.speedup(%)"] = table["forward.latency.speedup(%)"].round(2)
if "forward.throughput(samples/s)" in table.columns:
table["forward.throughput.speedup(%)"] = (
table["forward.throughput(samples/s)"] / table["forward.throughput(samples/s)"].iloc[0] - 1
) * 100
table["forward.throughput.speedup(%)"] = table["forward.throughput.speedup(%)"].round(2)
if "forward.peak_memory(MB)" in table.columns:
table["forward.peak_memory.savings(%)"] = (
1 - table["forward.peak_memory(MB)"] / table["forward.peak_memory(MB)"].iloc[0]
) * 100
table["forward.peak_memory.savings(%)"] = table["forward.peak_memory.savings(%)"].round(2)
if "generate.latency(s)" in table.columns:
table["generate.latency.speedup(%)"] = (
1 - table["generate.latency(s)"] / table["generate.latency(s)"].iloc[0]
) * 100
table["generate.latency.speedup(%)"] = table["generate.latency.speedup(%)"].round(2)
if "generate.throughput(tokens/s)" in table.columns:
table["generate.throughput.speedup(%)"] = (
table["generate.throughput(tokens/s)"] / table["generate.throughput(tokens/s)"].iloc[0] - 1
) * 100
table["generate.throughput.speedup(%)"] = table["generate.throughput.speedup(%)"].round(2)
if "generate.peak_memory(MB)" in table.columns:
table["generate.peak_memory.savings(%)"] = (
1 - table["generate.peak_memory(MB)"] / table["generate.peak_memory(MB)"].iloc[0]
) * 100
table["generate.peak_memory.savings(%)"] = table["generate.peak_memory.savings(%)"].round(2)
return table
|