Spaces:
Runtime error
Runtime error
Duplicate from beki/pii-anonymizer
Browse filesCo-authored-by: Benjamin Kilimnik <[email protected]>
- .gitattributes +31 -0
- README.md +14 -0
- app.py +212 -0
- flair_recognizer.py +245 -0
- requirements.txt +8 -0
- spacy_recognizer.py +131 -0
.gitattributes
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Presidio with custom PII models trained on PII data generated by Privy
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.10.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: beki/pii-anonymizer
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""Streamlit app for Presidio + Privy-trained PII models."""
|
3 |
+
|
4 |
+
import spacy
|
5 |
+
from spacy_recognizer import CustomSpacyRecognizer
|
6 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
7 |
+
from presidio_anonymizer import AnonymizerEngine
|
8 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
9 |
+
import pandas as pd
|
10 |
+
from annotated_text import annotated_text
|
11 |
+
from json import JSONEncoder
|
12 |
+
import json
|
13 |
+
import warnings
|
14 |
+
import streamlit as st
|
15 |
+
import os
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
# from flair_recognizer import FlairRecognizer
|
19 |
+
|
20 |
+
# Helper methods
|
21 |
+
@st.cache(allow_output_mutation=True)
|
22 |
+
def analyzer_engine():
|
23 |
+
"""Return AnalyzerEngine."""
|
24 |
+
|
25 |
+
spacy_recognizer = CustomSpacyRecognizer()
|
26 |
+
|
27 |
+
configuration = {
|
28 |
+
"nlp_engine_name": "spacy",
|
29 |
+
"models": [
|
30 |
+
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
|
31 |
+
}
|
32 |
+
|
33 |
+
# Create NLP engine based on configuration
|
34 |
+
provider = NlpEngineProvider(nlp_configuration=configuration)
|
35 |
+
nlp_engine = provider.create_engine()
|
36 |
+
|
37 |
+
registry = RecognizerRegistry()
|
38 |
+
# add rule-based recognizers
|
39 |
+
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
40 |
+
registry.add_recognizer(spacy_recognizer)
|
41 |
+
# remove the nlp engine we passed, to use custom label mappings
|
42 |
+
registry.remove_recognizer("SpacyRecognizer")
|
43 |
+
|
44 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
|
45 |
+
registry=registry, supported_languages=["en"])
|
46 |
+
|
47 |
+
# uncomment for flair-based NLP recognizer
|
48 |
+
# flair_recognizer = FlairRecognizer()
|
49 |
+
# registry.load_predefined_recognizers()
|
50 |
+
# registry.add_recognizer(flair_recognizer)
|
51 |
+
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
|
52 |
+
return analyzer
|
53 |
+
|
54 |
+
|
55 |
+
@st.cache(allow_output_mutation=True)
|
56 |
+
def anonymizer_engine():
|
57 |
+
"""Return AnonymizerEngine."""
|
58 |
+
return AnonymizerEngine()
|
59 |
+
|
60 |
+
|
61 |
+
def get_supported_entities():
|
62 |
+
"""Return supported entities from the Analyzer Engine."""
|
63 |
+
return analyzer_engine().get_supported_entities()
|
64 |
+
|
65 |
+
|
66 |
+
def analyze(**kwargs):
|
67 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
68 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
69 |
+
kwargs["entities"] = None
|
70 |
+
return analyzer_engine().analyze(**kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
def anonymize(text, analyze_results):
|
74 |
+
"""Anonymize identified input using Presidio Abonymizer."""
|
75 |
+
if not text:
|
76 |
+
return
|
77 |
+
res = anonymizer_engine().anonymize(text, analyze_results)
|
78 |
+
return res.text
|
79 |
+
|
80 |
+
|
81 |
+
def annotate(text, st_analyze_results, st_entities):
|
82 |
+
tokens = []
|
83 |
+
# sort by start index
|
84 |
+
results = sorted(st_analyze_results, key=lambda x: x.start)
|
85 |
+
for i, res in enumerate(results):
|
86 |
+
if i == 0:
|
87 |
+
tokens.append(text[:res.start])
|
88 |
+
|
89 |
+
# append entity text and entity type
|
90 |
+
tokens.append((text[res.start: res.end], res.entity_type))
|
91 |
+
|
92 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
93 |
+
if i != len(results) - 1:
|
94 |
+
tokens.append(text[res.end:results[i+1].start])
|
95 |
+
# if no more entities coming, add all remaining text
|
96 |
+
else:
|
97 |
+
tokens.append(text[res.end:])
|
98 |
+
return tokens
|
99 |
+
|
100 |
+
|
101 |
+
st.set_page_config(page_title="Privy + Presidio demo (English)", layout="wide")
|
102 |
+
|
103 |
+
# Side bar
|
104 |
+
st.sidebar.markdown(
|
105 |
+
"""
|
106 |
+
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol traces (JSON, SQL, XML etc.) generated by
|
107 |
+
[Privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and rule-based classifiers from [Presidio](https://aka.ms/presidio).
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
|
111 |
+
st_entities = st.sidebar.multiselect(
|
112 |
+
label="Which entities to look for?",
|
113 |
+
options=get_supported_entities(),
|
114 |
+
default=list(get_supported_entities()),
|
115 |
+
)
|
116 |
+
|
117 |
+
st_threshold = st.sidebar.slider(
|
118 |
+
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
119 |
+
)
|
120 |
+
|
121 |
+
st_return_decision_process = st.sidebar.checkbox(
|
122 |
+
"Add analysis explanations in json")
|
123 |
+
|
124 |
+
st.sidebar.info(
|
125 |
+
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
|
126 |
+
"For more info visit [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [aka.ms/presidio](https://aka.ms/presidio)"
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
# Main panel
|
131 |
+
analyzer_load_state = st.info(
|
132 |
+
"Starting Presidio analyzer and loading Privy-trained PII model...")
|
133 |
+
engine = analyzer_engine()
|
134 |
+
analyzer_load_state.empty()
|
135 |
+
|
136 |
+
|
137 |
+
st_text = st.text_area(
|
138 |
+
label="Type in some text",
|
139 |
+
value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
|
140 |
+
"\n\n"
|
141 |
+
"{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
|
142 |
+
height=200,
|
143 |
+
)
|
144 |
+
|
145 |
+
button = st.button("Detect PII")
|
146 |
+
|
147 |
+
if 'first_load' not in st.session_state:
|
148 |
+
st.session_state['first_load'] = True
|
149 |
+
|
150 |
+
# After
|
151 |
+
st.subheader("Analyzed")
|
152 |
+
with st.spinner("Analyzing..."):
|
153 |
+
if button or st.session_state.first_load:
|
154 |
+
st_analyze_results = analyze(
|
155 |
+
text=st_text,
|
156 |
+
entities=st_entities,
|
157 |
+
language="en",
|
158 |
+
score_threshold=st_threshold,
|
159 |
+
return_decision_process=st_return_decision_process,
|
160 |
+
)
|
161 |
+
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
|
162 |
+
# annotated_tokens
|
163 |
+
annotated_text(*annotated_tokens)
|
164 |
+
# vertical space
|
165 |
+
st.text("")
|
166 |
+
|
167 |
+
st.subheader("Anonymized")
|
168 |
+
|
169 |
+
with st.spinner("Anonymizing..."):
|
170 |
+
if button or st.session_state.first_load:
|
171 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
172 |
+
st_anonymize_results
|
173 |
+
|
174 |
+
|
175 |
+
# table result
|
176 |
+
st.subheader("Detailed Findings")
|
177 |
+
if st_analyze_results:
|
178 |
+
res_dicts = [r.to_dict() for r in st_analyze_results]
|
179 |
+
for d in res_dicts:
|
180 |
+
d['Value'] = st_text[d['start']:d['end']]
|
181 |
+
df = pd.DataFrame.from_records(res_dicts)
|
182 |
+
df = df[["entity_type", "Value", "score", "start", "end"]].rename(
|
183 |
+
{
|
184 |
+
"entity_type": "Entity type",
|
185 |
+
"start": "Start",
|
186 |
+
"end": "End",
|
187 |
+
"score": "Confidence",
|
188 |
+
},
|
189 |
+
axis=1,
|
190 |
+
)
|
191 |
+
|
192 |
+
st.dataframe(df, width=1000)
|
193 |
+
else:
|
194 |
+
st.text("No findings")
|
195 |
+
|
196 |
+
st.session_state['first_load'] = True
|
197 |
+
|
198 |
+
# json result
|
199 |
+
|
200 |
+
|
201 |
+
class ToDictListEncoder(JSONEncoder):
|
202 |
+
"""Encode dict to json."""
|
203 |
+
|
204 |
+
def default(self, o):
|
205 |
+
"""Encode to JSON using to_dict."""
|
206 |
+
if o:
|
207 |
+
return o.to_dict()
|
208 |
+
return []
|
209 |
+
|
210 |
+
|
211 |
+
if st_return_decision_process:
|
212 |
+
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))
|
flair_recognizer.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, List, Tuple, Set
|
3 |
+
|
4 |
+
from presidio_analyzer import (
|
5 |
+
RecognizerResult,
|
6 |
+
EntityRecognizer,
|
7 |
+
AnalysisExplanation,
|
8 |
+
)
|
9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
+
|
11 |
+
try:
|
12 |
+
from flair.data import Sentence
|
13 |
+
from flair.models import SequenceTagger
|
14 |
+
except ImportError:
|
15 |
+
print("Flair is not installed")
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.getLogger("presidio-analyzer")
|
19 |
+
|
20 |
+
|
21 |
+
class FlairRecognizer(EntityRecognizer):
|
22 |
+
"""
|
23 |
+
Wrapper for a flair model, if needed to be used within Presidio Analyzer.
|
24 |
+
:example:
|
25 |
+
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
26 |
+
>flair_recognizer = FlairRecognizer()
|
27 |
+
>registry = RecognizerRegistry()
|
28 |
+
>registry.add_recognizer(flair_recognizer)
|
29 |
+
>analyzer = AnalyzerEngine(registry=registry)
|
30 |
+
>results = analyzer.analyze(
|
31 |
+
> "My name is Christopher and I live in Irbid.",
|
32 |
+
> language="en",
|
33 |
+
> return_decision_process=True,
|
34 |
+
>)
|
35 |
+
>for result in results:
|
36 |
+
> print(result)
|
37 |
+
> print(result.analysis_explanation)
|
38 |
+
"""
|
39 |
+
|
40 |
+
ENTITIES = [
|
41 |
+
"LOCATION",
|
42 |
+
"PERSON",
|
43 |
+
"NRP",
|
44 |
+
"GPE",
|
45 |
+
"ORGANIZATION",
|
46 |
+
"MAC_ADDRESS",
|
47 |
+
"US_BANK_NUMBER",
|
48 |
+
"IMEI",
|
49 |
+
"TITLE",
|
50 |
+
"LICENSE_PLATE",
|
51 |
+
"US_PASSPORT",
|
52 |
+
"CURRENCY",
|
53 |
+
"ROUTING_NUMBER",
|
54 |
+
"US_ITIN",
|
55 |
+
"US_BANK_NUMBER",
|
56 |
+
"US_DRIVER_LICENSE",
|
57 |
+
"AGE",
|
58 |
+
"PASSWORD",
|
59 |
+
"SWIFT_CODE",
|
60 |
+
]
|
61 |
+
|
62 |
+
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
|
63 |
+
|
64 |
+
CHECK_LABEL_GROUPS = [
|
65 |
+
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}),
|
66 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
67 |
+
({"NRP"}, {"NORP", "NRP"}),
|
68 |
+
({"GPE"}, {"GPE"}),
|
69 |
+
({"ORGANIZATION"}, {"ORG"}),
|
70 |
+
({"MAC_ADDRESS"}, {"MAC_ADDRESS"}),
|
71 |
+
({"US_BANK_NUMBER"}, {"US_BANK_NUMBER"}),
|
72 |
+
({"IMEI"}, {"IMEI"}),
|
73 |
+
({"TITLE"}, {"TITLE"}),
|
74 |
+
({"LICENSE_PLATE"}, {"LICENSE_PLATE"}),
|
75 |
+
({"US_PASSPORT"}, {"US_PASSPORT"}),
|
76 |
+
({"CURRENCY"}, {"CURRENCY"}),
|
77 |
+
({"ROUTING_NUMBER"}, {"ROUTING_NUMBER"}),
|
78 |
+
({"AGE"}, {"AGE"}),
|
79 |
+
({"CURRENCY"}, {"CURRENCY"}),
|
80 |
+
({"SWIFT_CODE"}, {"SWIFT_CODE"}),
|
81 |
+
({"US_ITIN"}, {"US_ITIN"}),
|
82 |
+
({"US_BANK_NUMBER"}, {"US_BANK_NUMBER"}),
|
83 |
+
({"US_DRIVER_LICENSE"}, {"US_DRIVER_LICENSE"}),
|
84 |
+
]
|
85 |
+
|
86 |
+
MODEL_LANGUAGES = {
|
87 |
+
"en":"beki/flair-pii-english-large",
|
88 |
+
# "en":"flair-trf.pt",
|
89 |
+
}
|
90 |
+
|
91 |
+
PRESIDIO_EQUIVALENCES = {
|
92 |
+
"PER": "PERSON",
|
93 |
+
"LOC": "LOCATION",
|
94 |
+
"ORG": "ORGANIZATION",
|
95 |
+
"NROP": "NRP",
|
96 |
+
"URL": "URL",
|
97 |
+
"US_ITIN": "US_ITIN",
|
98 |
+
"US_PASSPORT": "US_PASSPORT",
|
99 |
+
"IBAN_CODE": "IBAN_CODE",
|
100 |
+
"IP_ADDRESS": "IP_ADDRESS",
|
101 |
+
"EMAIL_ADDRESS": "EMAIL",
|
102 |
+
"US_DRIVER_LICENSE": "US_DRIVER_LICENSE",
|
103 |
+
"US_BANK_NUMBER": "US_BANK_NUMBER",
|
104 |
+
}
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
supported_language: str = "en",
|
109 |
+
supported_entities: Optional[List[str]] = None,
|
110 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
111 |
+
model: SequenceTagger = None,
|
112 |
+
):
|
113 |
+
self.check_label_groups = (
|
114 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
115 |
+
)
|
116 |
+
|
117 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
118 |
+
self.model = (
|
119 |
+
model
|
120 |
+
if model
|
121 |
+
else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
|
122 |
+
)
|
123 |
+
|
124 |
+
super().__init__(
|
125 |
+
supported_entities=supported_entities,
|
126 |
+
supported_language=supported_language,
|
127 |
+
name="Flair Analytics",
|
128 |
+
)
|
129 |
+
|
130 |
+
def load(self) -> None:
|
131 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
132 |
+
pass
|
133 |
+
|
134 |
+
def get_supported_entities(self) -> List[str]:
|
135 |
+
"""
|
136 |
+
Return supported entities by this model.
|
137 |
+
:return: List of the supported entities.
|
138 |
+
"""
|
139 |
+
return self.supported_entities
|
140 |
+
|
141 |
+
# Class to use Flair with Presidio as an external recognizer.
|
142 |
+
def analyze(
|
143 |
+
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
|
144 |
+
) -> List[RecognizerResult]:
|
145 |
+
"""
|
146 |
+
Analyze text using Text Analytics.
|
147 |
+
:param text: The text for analysis.
|
148 |
+
:param entities: Not working properly for this recognizer.
|
149 |
+
:param nlp_artifacts: Not used by this recognizer.
|
150 |
+
:param language: Text language. Supported languages in MODEL_LANGUAGES
|
151 |
+
:return: The list of Presidio RecognizerResult constructed from the recognized
|
152 |
+
Flair detections.
|
153 |
+
"""
|
154 |
+
|
155 |
+
results = []
|
156 |
+
|
157 |
+
sentences = Sentence(text)
|
158 |
+
self.model.predict(sentences)
|
159 |
+
|
160 |
+
# If there are no specific list of entities, we will look for all of it.
|
161 |
+
if not entities:
|
162 |
+
entities = self.supported_entities
|
163 |
+
|
164 |
+
for entity in entities:
|
165 |
+
if entity not in self.supported_entities:
|
166 |
+
continue
|
167 |
+
|
168 |
+
for ent in sentences.get_spans("ner"):
|
169 |
+
if not self.__check_label(
|
170 |
+
entity, ent.labels[0].value, self.check_label_groups
|
171 |
+
):
|
172 |
+
continue
|
173 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
174 |
+
ent.labels[0].value
|
175 |
+
)
|
176 |
+
explanation = self.build_flair_explanation(
|
177 |
+
round(ent.score, 2), textual_explanation
|
178 |
+
)
|
179 |
+
flair_result = self._convert_to_recognizer_result(ent, explanation)
|
180 |
+
|
181 |
+
results.append(flair_result)
|
182 |
+
|
183 |
+
return results
|
184 |
+
|
185 |
+
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
|
186 |
+
|
187 |
+
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
|
188 |
+
flair_score = round(entity.score, 2)
|
189 |
+
|
190 |
+
flair_results = RecognizerResult(
|
191 |
+
entity_type=entity_type,
|
192 |
+
start=entity.start_position,
|
193 |
+
end=entity.end_position,
|
194 |
+
score=flair_score,
|
195 |
+
analysis_explanation=explanation,
|
196 |
+
)
|
197 |
+
|
198 |
+
return flair_results
|
199 |
+
|
200 |
+
def build_flair_explanation(
|
201 |
+
self, original_score: float, explanation: str
|
202 |
+
) -> AnalysisExplanation:
|
203 |
+
"""
|
204 |
+
Create explanation for why this result was detected.
|
205 |
+
:param original_score: Score given by this recognizer
|
206 |
+
:param explanation: Explanation string
|
207 |
+
:return:
|
208 |
+
"""
|
209 |
+
explanation = AnalysisExplanation(
|
210 |
+
recognizer=self.__class__.__name__,
|
211 |
+
original_score=original_score,
|
212 |
+
textual_explanation=explanation,
|
213 |
+
)
|
214 |
+
return explanation
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def __check_label(
|
218 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
219 |
+
) -> bool:
|
220 |
+
return any(
|
221 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
|
227 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
228 |
+
|
229 |
+
flair_recognizer = (
|
230 |
+
FlairRecognizer()
|
231 |
+
) # This would download a very large (+2GB) model on the first run
|
232 |
+
|
233 |
+
registry = RecognizerRegistry()
|
234 |
+
registry.add_recognizer(flair_recognizer)
|
235 |
+
|
236 |
+
analyzer = AnalyzerEngine(registry=registry)
|
237 |
+
|
238 |
+
results = analyzer.analyze(
|
239 |
+
"{first_name: Moustafa, sale_id: 235234}",
|
240 |
+
language="en",
|
241 |
+
return_decision_process=True,
|
242 |
+
)
|
243 |
+
for result in results:
|
244 |
+
print(result)
|
245 |
+
print(result.analysis_explanation)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
presidio-anonymizer
|
4 |
+
presidio-analyzer
|
5 |
+
torch
|
6 |
+
#flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653
|
7 |
+
st-annotated-text
|
8 |
+
https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
|
spacy_recognizer.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, List, Tuple, Set
|
3 |
+
|
4 |
+
from presidio_analyzer import (
|
5 |
+
RecognizerResult,
|
6 |
+
LocalRecognizer,
|
7 |
+
AnalysisExplanation,
|
8 |
+
)
|
9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
+
from presidio_analyzer.predefined_recognizers.spacy_recognizer import SpacyRecognizer
|
11 |
+
|
12 |
+
logger = logging.getLogger("presidio-analyzer")
|
13 |
+
|
14 |
+
|
15 |
+
class CustomSpacyRecognizer(LocalRecognizer):
|
16 |
+
|
17 |
+
ENTITIES = [
|
18 |
+
"LOCATION",
|
19 |
+
"PERSON",
|
20 |
+
"NRP",
|
21 |
+
"ORGANIZATION",
|
22 |
+
"DATE_TIME",
|
23 |
+
]
|
24 |
+
|
25 |
+
DEFAULT_EXPLANATION = "Identified as {} by Spacy's Named Entity Recognition (Privy-trained)"
|
26 |
+
|
27 |
+
CHECK_LABEL_GROUPS = [
|
28 |
+
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}),
|
29 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
30 |
+
({"NRP"}, {"NORP", "NRP"}),
|
31 |
+
({"ORGANIZATION"}, {"ORG"}),
|
32 |
+
({"DATE_TIME"}, {"DATE_TIME"}),
|
33 |
+
]
|
34 |
+
|
35 |
+
MODEL_LANGUAGES = {
|
36 |
+
"en": "beki/en_spacy_pii_distilbert",
|
37 |
+
}
|
38 |
+
|
39 |
+
PRESIDIO_EQUIVALENCES = {
|
40 |
+
"PER": "PERSON",
|
41 |
+
"LOC": "LOCATION",
|
42 |
+
"ORG": "ORGANIZATION",
|
43 |
+
"NROP": "NRP",
|
44 |
+
"DATE_TIME": "DATE_TIME",
|
45 |
+
}
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
supported_language: str = "en",
|
50 |
+
supported_entities: Optional[List[str]] = None,
|
51 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
52 |
+
context: Optional[List[str]] = None,
|
53 |
+
ner_strength: float = 0.85,
|
54 |
+
):
|
55 |
+
self.ner_strength = ner_strength
|
56 |
+
self.check_label_groups = (
|
57 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
58 |
+
)
|
59 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
60 |
+
super().__init__(
|
61 |
+
supported_entities=supported_entities,
|
62 |
+
supported_language=supported_language,
|
63 |
+
)
|
64 |
+
|
65 |
+
def load(self) -> None:
|
66 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
67 |
+
pass
|
68 |
+
|
69 |
+
def get_supported_entities(self) -> List[str]:
|
70 |
+
"""
|
71 |
+
Return supported entities by this model.
|
72 |
+
:return: List of the supported entities.
|
73 |
+
"""
|
74 |
+
return self.supported_entities
|
75 |
+
|
76 |
+
def build_spacy_explanation(
|
77 |
+
self, original_score: float, explanation: str
|
78 |
+
) -> AnalysisExplanation:
|
79 |
+
"""
|
80 |
+
Create explanation for why this result was detected.
|
81 |
+
:param original_score: Score given by this recognizer
|
82 |
+
:param explanation: Explanation string
|
83 |
+
:return:
|
84 |
+
"""
|
85 |
+
explanation = AnalysisExplanation(
|
86 |
+
recognizer=self.__class__.__name__,
|
87 |
+
original_score=original_score,
|
88 |
+
textual_explanation=explanation,
|
89 |
+
)
|
90 |
+
return explanation
|
91 |
+
|
92 |
+
def analyze(self, text, entities, nlp_artifacts=None): # noqa D102
|
93 |
+
results = []
|
94 |
+
if not nlp_artifacts:
|
95 |
+
logger.warning("Skipping SpaCy, nlp artifacts not provided...")
|
96 |
+
return results
|
97 |
+
|
98 |
+
ner_entities = nlp_artifacts.entities
|
99 |
+
|
100 |
+
for entity in entities:
|
101 |
+
if entity not in self.supported_entities:
|
102 |
+
continue
|
103 |
+
for ent in ner_entities:
|
104 |
+
if not self.__check_label(entity, ent.label_, self.check_label_groups):
|
105 |
+
continue
|
106 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
107 |
+
ent.label_)
|
108 |
+
explanation = self.build_spacy_explanation(
|
109 |
+
self.ner_strength, textual_explanation
|
110 |
+
)
|
111 |
+
spacy_result = RecognizerResult(
|
112 |
+
entity_type=entity,
|
113 |
+
start=ent.start_char,
|
114 |
+
end=ent.end_char,
|
115 |
+
score=self.ner_strength,
|
116 |
+
analysis_explanation=explanation,
|
117 |
+
recognition_metadata={
|
118 |
+
RecognizerResult.RECOGNIZER_NAME_KEY: self.name
|
119 |
+
},
|
120 |
+
)
|
121 |
+
results.append(spacy_result)
|
122 |
+
|
123 |
+
return results
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def __check_label(
|
127 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
128 |
+
) -> bool:
|
129 |
+
return any(
|
130 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
131 |
+
)
|