mast3r-3dgs / demo /gs_train.py
ostapagon's picture
Increase gpu time
78792f4
raw
history blame
10.9 kB
import sys
import os
import torch
from random import randint
import uuid
from tqdm.auto import tqdm
import gradio as gr
import importlib.util
from dataclasses import dataclass, field
from demo_globals import DEVICE
import spaces
from simple_knn._C import distCUDA2
@dataclass
class PipelineParams:
convert_SHs_python: bool = False
compute_cov3D_python: bool = False
debug: bool = False
@dataclass
class OptimizationParams:
# DEFAULT PARAMETERS
iterations: int = 30_000
position_lr_init: float = 0.00016
position_lr_final: float = 0.0000016
position_lr_delay_mult: float = 0.01
position_lr_max_steps: int = 30_000
feature_lr: float = 0.0025
opacity_lr: float = 0.05
scaling_lr: float = 0.005
rotation_lr: float = 0.001
percent_dense: float = 0.01
lambda_dssim: float = 0.2
densification_interval: int = 100
opacity_reset_interval: int = 3000
densify_from_iter: int = 500
densify_until_iter: int = 15_000
densify_grad_threshold: float = 0.0002
random_background: bool = False
@dataclass
class ModelParams:
sh_degree: int = 3
source_path: str = "../data/scenes/turtle/" # Default path, adjust as needed
model_path: str = ""
images: str = "images"
resolution: int = -1
white_background: bool = True
data_device: str = "cuda"
eval: bool = False
@spaces.GPU(duration=160)
def train(
data_source_path, iterations, position_lr_init, position_lr_final, position_lr_delay_mult,
position_lr_max_steps, feature_lr, opacity_lr, scaling_lr, rotation_lr,
percent_dense, lambda_dssim, densification_interval, opacity_reset_interval,
densify_from_iter, densify_until_iter, densify_grad_threshold
):
# Add the path to the gaussian-splatting repository
if 'GaussianRasterizer' not in globals():
gaussian_splatting_path = 'wild-gaussian-splatting/gaussian-splatting/'
sys.path.append(gaussian_splatting_path)
# Import necessary modules from the gaussian-splatting directory
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from utils.image_utils import psnr
from utils.graphics_utils import focal2fov, fov2focal, getProjectionMatrix
# Dynamically import the train module from the gaussian-splatting directory
train_spec = importlib.util.spec_from_file_location("gaussian_splatting_train", os.path.join(gaussian_splatting_path, "train.py"))
gaussian_splatting_train = importlib.util.module_from_spec(train_spec)
train_spec.loader.exec_module(gaussian_splatting_train)
# Import the necessary functions from the dynamically loaded module
prepare_output_and_logger = gaussian_splatting_train.prepare_output_and_logger
training_report = gaussian_splatting_train.training_report
print(data_source_path)
# Create instances of the parameter dataclasses
dataset = ModelParams(source_path=data_source_path,)
pipe = PipelineParams()
opt = OptimizationParams(
iterations=iterations,
position_lr_init=position_lr_init,
position_lr_final=position_lr_final,
position_lr_delay_mult=position_lr_delay_mult,
position_lr_max_steps=position_lr_max_steps,
feature_lr=feature_lr,
opacity_lr=opacity_lr,
scaling_lr=scaling_lr,
rotation_lr=rotation_lr,
percent_dense=percent_dense,
lambda_dssim=lambda_dssim,
densification_interval=densification_interval,
opacity_reset_interval=opacity_reset_interval,
densify_from_iter=densify_from_iter,
densify_until_iter=densify_until_iter,
densify_grad_threshold=densify_grad_threshold,
)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
first_iter = 0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
point_cloud_path = ""
progress = gr.Progress() # Initialize the progress bar
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
bg = torch.rand((3), device=DEVICE) if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
progress(iteration / opt.iterations) # Update Gradio progress bar
if iteration == opt.iterations:
progress_bar.close()
# Log and save
if (iteration == opt.iterations):
point_cloud_path = os.path.join(os.path.join(data_source_path, "point_cloud/iteration_{}".format(iteration)), "point_cloud.ply")
print("\n[ITER {}] Saving Gaussians to {}".format(iteration, point_cloud_path))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
# if (iteration == opt.iterations):
# print("\n[ITER {}] Saving Checkpoint".format(iteration))
# torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
from os import makedirs
import torchvision
import subprocess
@torch.no_grad()
def render_path(dataset : ModelParams, iteration : int, pipeline : PipelineParams, render_resize_method='crop'):
"""
render_resize_method: crop, pad
"""
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
iteration = scene.loaded_iter
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
model_path = dataset.model_path
name = "render"
views = scene.getRenderCameras()
# print(len(views))
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if render_resize_method == 'crop':
image_size = 256
elif render_resize_method == 'pad':
image_size = max(view.image_width, view.image_height)
else:
raise NotImplementedError
view.original_image = torch.zeros((3, image_size, image_size), device=view.original_image.device)
focal_length_x = fov2focal(view.FoVx, view.image_width)
focal_length_y = fov2focal(view.FoVy, view.image_height)
view.image_width = image_size
view.image_height = image_size
view.FoVx = focal2fov(focal_length_x, image_size)
view.FoVy = focal2fov(focal_length_y, image_size)
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
# print("background.device: ", background.device)
# print("view.device: ", view.original_image.device)
render_pkg = render(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# Use ffmpeg to output video
renders_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders.mp4")
# Use ffmpeg to output video
subprocess.run(["ffmpeg", "-y",
"-framerate", "24",
"-i", os.path.join(render_path, "%05d.png"),
"-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2",
"-c:v", "libx264",
"-pix_fmt", "yuv420p",
"-crf", "23",
# "-pix_fmt", "yuv420p", # Set pixel format for compatibility
renders_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
)
return renders_path
renders_path = render_path(dataset, opt.iterations, pipe, render_resize_method='crop')
torch.cuda.empty_cache()
return renders_path, point_cloud_path