Spaces:
Running
on
Zero
Running
on
Zero
Try this wheels
Browse files- demo/gs_train.py +112 -3
- requirements.txt +1 -1
demo/gs_train.py
CHANGED
@@ -12,6 +12,7 @@ from demo_globals import DEVICE
|
|
12 |
import spaces
|
13 |
from simple_knn._C import distCUDA2
|
14 |
|
|
|
15 |
@dataclass
|
16 |
class PipelineParams:
|
17 |
convert_SHs_python: bool = False
|
@@ -78,7 +79,7 @@ def train(
|
|
78 |
|
79 |
# Import necessary modules from the gaussian-splatting directory
|
80 |
from utils.loss_utils import l1_loss, ssim
|
81 |
-
from gaussian_renderer import render
|
82 |
from scene import Scene, GaussianModel
|
83 |
from utils.general_utils import safe_state
|
84 |
from utils.image_utils import psnr
|
@@ -132,6 +133,114 @@ def train(
|
|
132 |
random_background=random_background
|
133 |
)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
args = TrainingArgs()
|
136 |
|
137 |
testing_iterations = args.test_iterations
|
@@ -280,8 +389,8 @@ def train(
|
|
280 |
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
|
281 |
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
|
282 |
|
283 |
-
print("background.device: ", background.device)
|
284 |
-
print("view.device: ", view.original_image.device)
|
285 |
render_pkg = render(view, gaussians, pipeline, background)
|
286 |
rendering = render_pkg["render"]
|
287 |
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
|
|
|
12 |
import spaces
|
13 |
from simple_knn._C import distCUDA2
|
14 |
|
15 |
+
|
16 |
@dataclass
|
17 |
class PipelineParams:
|
18 |
convert_SHs_python: bool = False
|
|
|
79 |
|
80 |
# Import necessary modules from the gaussian-splatting directory
|
81 |
from utils.loss_utils import l1_loss, ssim
|
82 |
+
# from gaussian_renderer import render
|
83 |
from scene import Scene, GaussianModel
|
84 |
from utils.general_utils import safe_state
|
85 |
from utils.image_utils import psnr
|
|
|
133 |
random_background=random_background
|
134 |
)
|
135 |
|
136 |
+
|
137 |
+
#
|
138 |
+
# Copyright (C) 2023, Inria
|
139 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
140 |
+
# All rights reserved.
|
141 |
+
#
|
142 |
+
# This software is free for non-commercial, research and evaluation use
|
143 |
+
# under the terms of the LICENSE.md file.
|
144 |
+
#
|
145 |
+
# For inquiries contact [email protected]
|
146 |
+
#
|
147 |
+
print("local_renderer")
|
148 |
+
import torch
|
149 |
+
import math
|
150 |
+
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
|
151 |
+
from scene.gaussian_model import GaussianModel
|
152 |
+
from utils.sh_utils import eval_sh
|
153 |
+
|
154 |
+
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
|
155 |
+
"""
|
156 |
+
Render the scene.
|
157 |
+
|
158 |
+
Background tensor (bg_color) must be on GPU!
|
159 |
+
"""
|
160 |
+
|
161 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
162 |
+
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
163 |
+
try:
|
164 |
+
screenspace_points.retain_grad()
|
165 |
+
except:
|
166 |
+
pass
|
167 |
+
|
168 |
+
# Set up rasterization configuration
|
169 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
170 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
171 |
+
|
172 |
+
kernel_size = 0.1
|
173 |
+
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), dtype=torch.float32, device="cuda")
|
174 |
+
|
175 |
+
raster_settings = GaussianRasterizationSettings(
|
176 |
+
image_height=int(viewpoint_camera.image_height),
|
177 |
+
image_width=int(viewpoint_camera.image_width),
|
178 |
+
tanfovx=tanfovx,
|
179 |
+
tanfovy=tanfovy,
|
180 |
+
kernel_size=kernel_size,
|
181 |
+
subpixel_offset=subpixel_offset,
|
182 |
+
bg=bg_color,
|
183 |
+
scale_modifier=scaling_modifier,
|
184 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
185 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
186 |
+
sh_degree=pc.active_sh_degree,
|
187 |
+
campos=viewpoint_camera.camera_center,
|
188 |
+
prefiltered=False,
|
189 |
+
debug=pipe.debug
|
190 |
+
)
|
191 |
+
|
192 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
193 |
+
|
194 |
+
means3D = pc.get_xyz
|
195 |
+
means2D = screenspace_points
|
196 |
+
opacity = pc.get_opacity
|
197 |
+
|
198 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
199 |
+
# scaling / rotation by the rasterizer.
|
200 |
+
scales = None
|
201 |
+
rotations = None
|
202 |
+
cov3D_precomp = None
|
203 |
+
if pipe.compute_cov3D_python:
|
204 |
+
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
205 |
+
else:
|
206 |
+
scales = pc.get_scaling
|
207 |
+
rotations = pc.get_rotation
|
208 |
+
|
209 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
210 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
211 |
+
shs = None
|
212 |
+
colors_precomp = None
|
213 |
+
if override_color is None:
|
214 |
+
if pipe.convert_SHs_python:
|
215 |
+
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
216 |
+
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
217 |
+
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
218 |
+
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
219 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
220 |
+
else:
|
221 |
+
shs = pc.get_features
|
222 |
+
else:
|
223 |
+
colors_precomp = override_color
|
224 |
+
|
225 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
226 |
+
rendered_image, radii = rasterizer(
|
227 |
+
means3D = means3D,
|
228 |
+
means2D = means2D,
|
229 |
+
shs = shs,
|
230 |
+
colors_precomp = colors_precomp,
|
231 |
+
opacities = opacity,
|
232 |
+
scales = scales,
|
233 |
+
rotations = rotations,
|
234 |
+
cov3D_precomp = cov3D_precomp)
|
235 |
+
|
236 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
237 |
+
# They will be excluded from value updates used in the splitting criteria.
|
238 |
+
return {"render": rendered_image,
|
239 |
+
"viewspace_points": screenspace_points,
|
240 |
+
"visibility_filter" : radii > 0,
|
241 |
+
"radii": radii}
|
242 |
+
|
243 |
+
|
244 |
args = TrainingArgs()
|
245 |
|
246 |
testing_iterations = args.test_iterations
|
|
|
389 |
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
|
390 |
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
|
391 |
|
392 |
+
# print("background.device: ", background.device)
|
393 |
+
# print("view.device: ", view.original_image.device)
|
394 |
render_pkg = render(view, gaussians, pipeline, background)
|
395 |
rendering = render_pkg["render"]
|
396 |
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
|
requirements.txt
CHANGED
@@ -33,4 +33,4 @@ ipywidgets
|
|
33 |
jupyterlab
|
34 |
sql
|
35 |
|
36 |
-
https://huggingface.co/spaces/
|
|
|
33 |
jupyterlab
|
34 |
sql
|
35 |
|
36 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
|