Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
# import os | |
# import random | |
# from gradio_client import Client | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Initialize Florence model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
# api_key = os.getenv("HF_READ_TOKEN") | |
article_text = """ | |
<div style="text-align: center;"> | |
<p>Enjoying the tool? Buy me a coffee and get exclusive prompt guides!</p> | |
<p><i>Instantly unlock helpful tips for creating better prompts!</i></p> | |
<div style="display: flex; justify-content: center;"> | |
<a href="https://piczify.lemonsqueezy.com/buy/0f5206fa-68e8-42f6-9ca8-4f80c587c83e"> | |
<img src="https://www.buymeacoffee.com/assets/img/custom_images/yellow_img.png" | |
alt="Buy Me a Coffee" | |
style="height: 40px; width: auto; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); border-radius: 10px;"> | |
</a> | |
</div> | |
</div> | |
""" | |
def generate_caption(image): | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"] | |
print("\n\nGeneration completed!:"+ prompt) | |
return prompt | |
# yield prompt, None | |
# image_path = generate_image(prompt,random.randint(0, 4294967296)) | |
# yield prompt, image_path | |
# def generate_image(prompt, seed=42, width=1024, height=1024): | |
# try: | |
# result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict( | |
# prompt=prompt, | |
# seed=seed, | |
# width=width, | |
# height=height, | |
# api_name="/generate_image" | |
# ) | |
# # Extract the image path from the result tuple | |
# image_path = result[0] | |
# return image_path | |
# except Exception as e: | |
# raise Exception(f"Error generating image: {str(e)}") | |
io = gr.Interface(generate_caption, | |
inputs=[gr.Image(label="Input Image")], | |
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True), | |
# gr.Image(label="Output Image") | |
], | |
#article = article_text | |
) | |
io.launch(debug=True) |